NASA-CR-192176 L

>
EXPERT SYSTEM VERIFICATION
AND
VALIDATION STUDY

7

(ON}

WORKSHOP & PRESENTATION
MATERIAL

Scott W. French
David Hamilton

International Business Machines Corporation

August 1992

4

0

0 0

- (%] P~

Y o A Cooperative Agreement NCC 9-16

g g :’; Research Activity No. Al.16

z D o
% NASA Johnson Space Center
~ Information Systems Directorate
N Information Technology Division

" ol

> aT

G- C
FOx D
(VO VY
) =
] o C
>Z X -
ne »

—Z 3 | -
-0 cm {
o L -4 5N
\.L'G*"o N\ —7 7
a - g Q h % 7 = 7
* o) -~ S~—— ==
WL Z %W N

>ﬁo§

Y .) .

~Ccw & Research Institute for Computing and Information Systems
Q2Za « W
: < a t,j 3; University of Houston-Clear Lake
NZ O
oD Z—C
- < o
- £
xaa UL
VDWO W= ®
| X @ FE
TR NI
VXY WO
A Ve
ZuCuxcC
[T S]

The RICIS Concept
“

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS} in 1986 to cncourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
programofresearch in advanced data processing technology needed forJSC's
main missions, including administrative, enginecring and science responsi-
bilitles. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission s to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and rescarchers. Within UHCL, the missfon s being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research and education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and tnforma-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

EXPERT SYSTEM VERIFICATION
AND
VALIDATION STUDY

WORKSHOP & PRESENTATION
MATERIAL

Scott W. French
David Hamilton

International Business Machines Corporation

. August 1992

Cooperative Agreement NCC 9-16
Research Activity No. Al.16

NASA Johnson Space Center
information Systems Directorate

Information Technology Division

EXPERT SYSTEM VERIFICATION
AND
VALIDATION STUDY

WORKSHOP & PRESENTATION
MATERIAL

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing
and Information Systems by Scott W. French and David Hamilton of the
International Business Machines Corporation. Dr. T. F. Leibfried, Jr. served as
RICIS research coordinator.

Funding was provided by the Information Technology Division, Information Systems
Directorate, NASA/JISC through Cooperative Agreement NCC 9-16 between the
NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
research coordinator for this activity was Christopher Culbert, Chief, Software
Technology Branch, Information Technology Division, Information Systems
Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.

Workshop on
Verification and
Validation of Expert
Systems

Introduction

Authors:

Scott W. French
FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton
HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation
3700 Bay Area Blvd.
Houston, TX 77058

= ==

iVeriﬁcaﬁon E Validation E

Welcome

Welcome to the Workshop on Verification
and Validation (V&V) of Expert Systems

This introduction will tell you

. Where we have been with respect to
V&V of ES

. Where we are headed with this
workshop

. What you, the student, will learn

4/28/92 2

Where We Have Been

Significant work has been done in KBS
V&V

. Development of conceptual
approaches

. Proposing various techniques

No significant case studies or field
demonstrations
. Many conjectures have been made

» No requirements,

» Few ES subjected to the same level
of V&V as conventional software

>> a 8 8

. Many problems discussed

» Test Coverage

» Unpredictability (rule interaction, run-
time performance, etc.)

» s

4/28/92 3

Where We Have Been ...

A survey was performed to assess the
state-of-the-practice in ES V&V

. Determine the real issues in V&V of
ES

. Assess the accuracy of the many
conjectures

« Determine the course of future work
in V&V of ES

4/28/92 4

Where We Have Been ...

60+ projects were asked questions such as

« What V&V activities are done, not
done?

. What issues occur in practice?

. To what extent does V&V play a part
in these issues?

. How satisfied are the users with the
quality and reliability of the ES

» NOTE: The survey did not attempt to
evaluate the quality of a specific ES

4/28/92 5

Where We Have Been ...

Caveats

. Results are not statistically valid
since responses were voluntary

. Responses were not validated since
they reflected the responder’s
opinion

Given these caveats, the survey results
point to recommendations

. Direct recommendations: those
derived directly from survey
responses

. Inferred recommendations: those
‘supported only by the data (i.e., the

responder did not list it as an issue)

4/28/92 6

Where We Have Been ...

Address the most frequently cited issues
(direct)

. Test coverage determination (63%)
. Knowledge Validation (60%)

. Problem Complexity (40%)

Recommend a Life-Cycle (direct)

. 229% indicated that no life-cycle
model was followed

. 43% indicated that the resulting ES
was taken directly from a prototype
(an operational prototype)

4/28/92 7

Where We Have Been ...

Develop guidelines for ES V&V (direct)
- Ad-hoc application of techniques

« ES evaluation difficult (27% of
developers vs. 100% of users)

. Expected ES to be at least as
accurate as expert (79% users and

developers)

» System did not meet expectations
(49% of developers and 100% of
users)

» System was less accurate than
expert (44% of developers vs. 80% of
users)

» 57% of operational development
efforts wrote no requirements

« 52% used only one technique

4/28/92 8

Where We Have Been ...

S ———

Address understandability and modularity
(inferred)

. 85% indicated test coverage was a
problem

. 83% indicated problem complexity as
a problem

. Yet, modularity and understandability
were not specifically addressed

Investigate potential configuration
management issues (inferred)

. Only 14% cited CM as an issue

. Yet, interviews indicated it was more
of a concern than the numbers
reflected

4/28/92 9

Where We Have Been ...

Investigate analysis tools to aid the expert
(inferred)

. 59% relied on the expert to analyze
knowledge structures

. 61% relied on the expert for
requirements

Develop criteria to classify systems by
intended use (inferred)

. e.g., Expert clone, Expert assistant,
Autonomous, etc.

. Interviews indicated a need for
tailorable guidelines based, not only
on criticality, but on intended use

4/28/92 10

Where We Are Headed

This workshop was developed in response
to the recommendations found in the
survey

The purpose of the workshop isto
positively impact the state-of-the-practice
in ES V&V

. Encourage the systematic application
of V&V techniques and approaches

» Ease problems in managing ES
projects

» Reduce re-work

» Reduce long-term costs (i.e., make
maintenance easier)

. Provide tailorable guidelines

» Give developers help in being
"systematic”

4/28/92 11

Where We Are Headed...

Day 1 Basic Concepts

« Morning
» ntroduction

» Presentation of background on
Verification and Validation (V&V)

concepts
» Demo

» Presentation of common
misconceptions concerning both Al

and V&V

- Afternoon
» Presentation of the Apollo 11
Scenario

» Presentation covering differences
between ES and procedural systems
and how those differences impact
V&V

» Demo

6/1/92 12

Where We Are Headed...

Day 2 Techniques

« Morning
» Review of Day 1 topics

» Present class discussion problem
and begin team exercises

» Demo

» Presentation on the importance of
Planning, Problem Analysis, and Re-
Engineering

- Afternoon

» Present Verification techniques and
exercises

Verificaton [Vvalidation

6/1/92 13

Where We Are Headed...

Day 3 Techniques ...

« Morning
» Review of Day 2 Topics

» Present more Verification techniques
and exercises

» Demo
« Afternoon
» Exchange verification approaches

» Present Validation techniques and
exercises

6/1/92 14

Where We Are Headed...

Day 4 Guidelines

« Morning

» Present guidelines for applying V&V
approaches

» Prepare presentation of exercises

- Afternoon

» Team presentations of exercise
solutions -

6/1/92 15

How We Will Get There

The following student material has been
provided in the notebook at your desk
1. Copy of all presentation material

« Introduction (tab)

. Basic Concepts (tab)

« Techniques (tab)

« Guidelines (tab)

2. Handouts (tab)

. Material to be periodically referenced

. Used to support presentation
material

. Contains exercises and some
possible solutions

6/1/92 16

How We Will Get There ...

Student materials ...

3. TLC Solutions (tab)

 Presents different approaches to
building functionally correct
solutions to the class problem

4. Exercises (tab)

« A collection of problems to be
worked in teams

5. Worksheets

. Provides quick reference information
and examples for use in applying key
techniques

6. References

. Collection of optional but suggested
reading

6/1/92 17

How We Will Get There ...

Questions encouraged during lectures

Class discussion questions will be posed
(informal roundtable discussion)

Will be divided into téams for some
exercises

. Results discussed informally for all
but final exercise

. Results of final exercise presented
before class

. Exercises are NOT a test. Ask
questions.

4/28/92 18

What You Should Learn

~—— What is V&V and why it is important.

. Problem Complexity and
Understandability (i.e., Modularity)

- Life-Cycle Issues
. Configuration Management

—= Differences between conventional and
ES V&V

~— Conventional and ES V&V techniques
- Test coverage
. Knowledge validation
o— Some key V&V rules of thumb
—= How to make V&V easier
. Easing analysis burden for the Expert
—= A suggested approach to V&V
. Guidelines for ES V&V

4/28/92 19

Workshop On
Verification and
Validation of Expert
Systems

Basic Concepts

Authors:

Scott W. French
FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton
HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation
3700 Bay Area Bivd.
Houston, TX 77058

Table of Contents

1L Introduction

Overview 1-2
Goals 1-6
The Verification Puzzie I-8
Overview of Test Phases 1-20
II. Testing Phases
System Testing -2
Unit/Integration Testing -7
Static Testing 1I-16
Life-Cycle Models I-22
IIL Common Misperceptions
Overview -2
Software in General -3
Expert Systems/Al in Particular -6
IV. Expert Systems Differences
Overview Iv.2
Expert Systems are Software Iv-3
ES Implementation Differences IV-4
ES Problem Differences IV-6
V. Two Traffic Controller Problems
Overview V-2
A Simple Traffic Controller Problem V-3
An "Expert" Traffic Controller Problem V-12
V1. Planning for V&V
Overview VI1-2
Issues in Planning for V&V VI-3
Framework for V&V Planning VI-12
VIL Summary of Basic Concepts
Key Points V-2
Common Software Misconceptions VII-5
Expert Systems Differences viI-6
Planning for V&V viI-3
Two Traffic Controller Problems vii-11

IIX. Appendix A: References

06/02/92

Introduction

Overview

Purpose

Review conventional V&V concepts

Dispel myths concerning Al and
Software Engineering

Clarify the difference between ES and
conventional software and how those
differences impact V&V

In short, justify the need for doing
V&V

pPRE@EMNG PAGE BLANK NOT FILM&D

4/20/92 I-2

Overview

Self-imposed Constraints

. Discuss concepts independent of a
specific life-cycle model

. Do not assume a particular
development methodology

. Separate the description of V&V from
the similar description of designing a
software system

4/20/92 I-3

Overview ...

Notes

. Our focus will be on V&V, not on how
the system is developed.

- We will not assume a background in
V&V or conventional software
development.

4/20/92 I-4

Overview ...

Key Tenants

4/20/92

A full understanding of the problem
is never initially possible but must be
developed incrementally along with
the system.

Correctness can never be practically
proved and a system will always have
errors.

To develop test cases, one needs to
understand the problem being
solved.

The earlier an error is discovered, the
more cheaply it can be corrected.

I-5

Goals

To show that V&V should be done

- Verification helps a developer
implement the system more
efficiently and cost-effectively

. Validation ensures the system solves
the customers problem in a reliable,
predictable, and user-friendly
manner.

4/20/92 I-6

Goals ...

To show that V&V works best when
performed as the system is developed

. This will be done as we review the
major V&V tasks.

. For a V&V task, we will look at the
inputs required from a corresponding

development task.

To show that the system can be developed
so as to make V&V easier

. We look to see how V&V might be
done more easily and cheaply by
doing some tasks earlier in the

development process.

4/20/92 I-7

The Verification Puzzle

o0—= There are many pieces to The
Verification Puzzle

« Functional Correctness: A correct
response for every stimulus to the
system, during installation and
checkout as well as operational use

« User-Interface Correctness:
Responses intended for human view
are clear; expected stimulus does not
put excessive burden on the user

4/20/92 1-8

The Verification Puzzle ...

o—x Pieces to The Verification Puzzle ...

. Safety Correctness: Will never
generate a response that will cause
harm to anyone or anything

. Resource Consumption Correctness:
No more processor time, storage,
bandwidth, etc. are used than s
allowed

. Utility Correctness: The system
(sufficiently) satisfies the user's
needs. |

4/20/92 I-9

The Verification Puzzle

User
Interface

Utility

Resource Functional
Consumption

04/21/92 1-10

The Verification Puzzle ...

/

o—rx Three aspects to demonstrating

system correctness - consistency,
completeness and termination.

1. Consistency

. The system is both externally and
internally consistent

» External - correct outputs and
actions (e.g., hitting ESC from any
window produces the same result)

» Internal - all internal items are
consistent (e.g., integer variables are
only assigned integer values)

04/21/92 I-11

The Verification Puzzie ...

0—x Aspects to demonstrating system
correctness ...

2. Completeness

« The system does all it should
» Accepts all required inputs
» Performs all required actions
» Creates all required outputs

» Maintains all required data

« More difficult than checking
consistency

04/21/92 I-12

The Verification Puzzle ...

o0—= Aspects to showing correctness ...

3. Termination

- correct programs produce the right
output for all possible inputs

. consistency and completeness show
that all outputs are correct

. termination shows that output is
always generated

04/21/92 I-13

The Verification Puzzle ...

o—= Demonstrating system correctness
depends on the type of software
system being developed

There are many different types of software

- Large software systems vs. smaller
self-contained problem solvers

- Highly complex vs. less complex
software

 Critical software vs. noncritical
software

- Expert system vs. a traditional
software problem; that can be
conveniently solved using expert
system techniques

04/21/92 I-14

The Verification Puzzle ...

o—x Demonstrating system correctness
also depends on how the system is
represented

Representation relates to type of software

Many kinds of system representations

. text, code, flow charts, etc.
Organization is more important than "kind"

Easiest to V&V when the "what" and "how"
of a system representation are separated

Three views of a system are helpful in
building this kind of representation33

« "Object"/Data View
« Control View

« Function View

4/28/92 I-15

The Verification Puzzle ...

o—x Demonstrating system correctness
also depends on how the system is
represented ...

"Object"/Data View
. View of the domain
 Foundation for the other views
Control View
« "Problem-solving Method"

. How elements of the "object” view
are used to solve the problem

Function View

. Defines methods the "control” view
may use

. Best when linked to elements of the
"object” view

04/21/92 I-16

The Verification Puzzle ...

Many V&V techniques have been
developed to address these aspects of
demonstrating system correctness

. Some are more suitable for certain
classes of correctness than others.

. Some are more suitable for certain
types, sizes and/or complexities of

software.

The key to solving the Verification puzzle is
to use the right techniques in the right
situations.

04/21/92 I-17

The Verification Puzzle ...

o0—= A systematic approach exists for
applying correctness techniques (i.e.,
solving the Verification Puzzie)

This approach can be broken down into
three parts

- System Testing: Dynamic testing
of all classes of correctness of an

overall software system

« Unit/integration Testing: Dynamic

testing of small self-contained pieces
of an overall system, focusing on
certain classes of correctness

» Static Testing: Analysis (desk
checking) of software specifications

(requirements, design) at different
levels of abstraction, focusing on
certain classes of correctness

04/21/92 I-18

The Verification Puzzle ...

Each of these steps (or test phases and will
be discussed separately

. A breakup of these phases into an
ordered sequence of fasks is part of
the development life cycle.

. We will not restrict our discussion to
any specific life-cycle.

04/21/92 I-19

The Verification Puzzle ...

There is a testing phase for each major
development phase

- System testing tests overall system
requirements.

- Integration and unit testing test the
units and subsystems created during
system construction

. Static testing can be used to check all
representations of a system

» design, code, requirements, etc.

. There is an implied order to these
testing phases

» has cost implications

» implies earlier phases support later
phases

04/21/92 1-20

Phases of Correctness

% =77 %

Recuirements | ——————— | System Test

Design | — > | Dtegration Test

Code —> [Unit Test

Static Testing

04/21/92 I-21

Overview of Test Phases ...

Each phase will be examined based on:

« Characteristics: An overall

description of the test phase

- Inputs: Each phase requires
certain information before it can be

applied.

- Implications: How the required
inputs can be acquired from other

development or testing phases

04/21/92 I-22

Testing Phases

System Testing

Characteristics

. Black box: Ignores implementation
details

» Required and observed behavior

» Sometimes called the "function” view
R

S B
}'») S
Mmp | | Bk Bor =)
L »g
I B

S

. Behavior: Described in terms of
stimulus/response pairs

» Defines an abstract "control” view
» Maps to detailed internal "control”

. Validation: Checks that the system
will satisfy the users' needs

4/21/92 -2

System Testing ...

o—=There is a difference between
verification and validation

Verification: "Am | building the product
right ?°

. Best when performed during system
development

. Emphasize showing correct
implementation of requirements

Validation: "Am | building the right
product?”

. Best performed when the system is
complete

. Can be partially done early via
prototyping

. Emphasis is on ensuring the
requirements are correct

4/21/92 II-3

System Testing ...

Inputs
« The software system itself.
. Ideally, for each possible stimulus:
» Description of the required response

» Indication of criticality (i.e., safety
implications of the response)

» Indication of response time allowed
(if constrained)

» Description of user interface for the
stimulus/response

» Indication of resources allowed for
generating the response

- In reality, impractical for all possible
stimuli

. Stimulus sequences can further be
described in terms of operational

scenarios

4/21/92 -4

System Testing ...

Clock O
— —_ — (N
= et C
g . ReSet” .0
e \ Q
N ~ N
—> . —» Q)
Light Y

Switch

04/21/92 -5

System Testing ...

Implications

 Specify requirements as operational
scenarios (i.e., documenting
expected use)

« Classes of stimulus/response pairs
correspond to self-contained units
"inside" the system

» Stimuli form classes or groups
» Classes or groups are units:.
» Units have subunits

» Subunits exhibit the same
characteristic views (object, function

and control)

« Overcome system test
impracticalities by testing underlying
units

1 This makes testing easier. This can be done regardless of how the system is actually
implemented. For example, the Space Shuttle Flight Software (FSW) is tested by principal function even
though this may not directly correspond to how the FSW is implemented.

4/21/92 -6

Unit/Integration Testing

Characteristics

. White Box: Does "look inside the
system" to see how it was
implemented

» Tests exercise internals units

. Behavior: Stimulus history can be
described in terms of internal
software states (e.g., sets of variable
values) and expected transitions
between states.

» "Control" view becomes more
explicit

. Interfaces: Much of the testing may
focus on how well the separately
developed units (subsystems)
interface with each other (i.e., does

~ the system "hang together”).

4/28/92 -7

Unit/Integration Testing ...

o—=x Software can be modeled based on
state

- Any program can be represented as
an automaton

"a machine or control mechanism
designed to follow, automatically, a
predetermined sequence of operations
or respond to encoded

instructions."Webster

. State refers to the behavior of an
automaton at a given point in time as
determined by its environment

» i.e., a "snapshot"” of the system

. State determines the future course
the automaton will take

» i.e., determines the next state
transition

4/21/92 -8

Unit/Integration Testing ...

Inputs

. The software units themselves.

. Stimulus/response behavior for each
unit

. ldentification of subsystems
(collections of units) along with their
required behavior

. Scenarios (e.g., operational
scenarios) that indicate how the units
and subsystems will be used |

4/21/92 -9

Unit/Integration Testing ...

Implications

o—=xUse of modularity directly benefits
Unit/Integration testing

- Reduces a system complexity

« The "object"/data view of the system

. Aids overall system understanding
» Design structure becomes explicit

» "... the designer can spend more time
understanding and deciding (about
the design) - rather than gathering
the information on which to base the

decision."14

4/21/92 [-10

Unit/Integration Testing ...

Implications ...

What are the modules or parts of a
system?

. Modules can be defined in many
ways
» A program procedure that captures

some common task is an example of
a module

» The best modules capture, not only a
common task, but common data as

well

4/21/92 O-11

Unit/Integration Testing ...

Implications ...

What are the modules or parts of a system

. Criteria for identifying modules

» Best choice is to capture state within
a module

» Capture complicated design
decisions

» Capture collections of common
"services"

4/21/92 -12

Unit/Integration Testing ...

Implications ...

So, what are the benefits of modaularity?

. Separate development and test

» Provides a framework for reuse

. Framework for information hiding
» Hiding unimportant implementation
details from module users

. Enforces standard methods of access
(encapsulation)

» Data access can only happen
through the module interface

. Incremental development(build a
little, test a little).

4/21/92 II-13

Unit/Integration Testing ...

Implications ...

Benefits of Modularity ...
« Reduces re-verification burden

» Changes are localized to specific
modules

» Stable interface minimizes impacts to
the outside world

« Eases project management
» One module = One unit of work

» One unit of work = One programmer

4/21/92 -14

Unit/Integration Testing ...

Implications ...
Design "bridges the gap”

System testing becomes easier
. Internal units need not be re-tested

However, Exhaustive testing is still
impractical

. Human analysis of design/code can
find many errors relatively cheaply

. Static testing addresses this

4/21/92 O-15

Static Testing

Characteristic

4/28/92

« Analysis: Software is not
dynamically executed; instead it is
analyzed statically (e.g., inspection).

 Specifications: Can take many

different forms but are generally
different from stimulus/response
behavior.

« General: Can be performed on
software, design, requirements, test
cases, etc. |

- Abstraction: Whereas dynamic
testing is on different sizes of

software (units, subsystems), static
testing is on different levels of
abstraction (requirements through
detailed implementation).

II-16

Static Testing ...

Complementary to Dynamic Testing

. Dynamic testing is needed because:

» Humans can not execute software in
their head very fast.

» Humans have difficulty managing
large numbers of small details.

. Static testing is needed because:

» Comprehensive dynamic testing is
impossible.

» Humans can perform more
comprehensive analysis than the
checking of individual
stimulus/response pairs.

» Humans can analyze abstract
descriptions (unlike computers).

4/21/92 -17

Static Testing ...

o—xAbstraction and refinement increases
human effectiveness in finding errors

« Abstraction
» Simplifies system descriptions
» Suppresses less important details
» Only consider important actions
» Consider similar objects identical

Refinement
» |s the incremental use of abstraction
» Creates nested levels of description

» Eases development and
comprehension of the three system

views

4/28/92 I-18

Static Testing ...

Inputs

. Description of the problem to be
solved (can be very high level)

. Description of requirements (safety,
user interface, etc.)

. Specifications of the item to be
statically tested

Implications

. Can be done hand-in-hand with
development; this decreases cost.

» Not dependant on specific
representations of the system

. Natural precursor activity for unit /
integration testing.

4/21/92 n-19

Life-Cycle Models

 The testing phases are compatible with
many standard, well-defined life-cycle
models.

Example model : DoD 2167

04/21/92 I-20

Life Cycle Models ...

Example model: NASA Model

04/21/92 o-22

NASA Life-Cycle Model

04/21/92 o-23

Life Cycle Models ...

Example model: European Space Agency
Model

04/21/92 II-24

04/21/92 o-25

Common
Misconceptions

e

Overview

The theoretical foundation of V&V has been
presented

Does this foundation still apply for Expert
Systems?

There are many misconceptions of V&V
. Some for software in general

. Many for Expert Systems

These misconceptions have impacted the
application of V&V

4/28/92 aoI-2

Software in general:

Misconception: The only important
deliverable of a software project is the
executable version of the program.

Facts:

. Software must be understood by its
users.

. Software must be understood by its
maintainers.

. Software must be re-tested as itis
changed.

. Therefore software should be well-
documented and V&V work products

(e.g., test cases) should be saved1

6/1/92 -3

Software in general ...

Misconception: Small Prototypes can be
scaled up into full-scale solutions.

Facts:

« "The heart of the problem is whether
the problem solving method used in a
prototype - which solves only a small
portion of the problem - will scale up

to solve the entire problem"11

. "Building large programs is NOT like
building small ones and software
engineering is different from most

other engineering disciplines."12

6/1/92 I-4

Software in general ...

Misconception: Methodical examination of
software is too costly.

Facts:
. Don't confuse rigor with formality

. "... by understanding what would be
involved in constructing a formal
argument, a programmer can do a far
better job constructing a rigorous

informal one"12

Misconception: Software can be proved
correct

Facts:

. One can prove certain properties
about software (e.g., the algorithm
never results in deadlock)

. One can not prove all aspects of
correctness.

6/1/92 I-5

Expert Systems/Al in particular:

Misconception: Expert Systems are Magic
(i.e., they are quick and easy to build)

Facts:

« "Al entails massive software
engineering."36

. "Software engineering is harder than
you think: | can not emphasize
strongly enough how true this

statement is."36

6/1/92 aI-6

Expert Systems/Al in particular ...

Misconception: All "expert systems” are
expert systems

Facts:

. Just because a program is written in
an "expert system language” does
not make it (fully) an expert system.

. Just because a program is written in
a "conventional language” does not
prevent it from being an expert
system

Misconception: Expert Systems are all
"Expert” Systems.

Facts:

.« Most Expert Systems have a
significant amount of conventional
code/function (survey results indicate
at least 45% of the developed system

is conventional16).

6/1/92 -7

Expert Systems/Al in particular ...

Misconception: The heuristic nature of
Expert Systems make them inherently
unreliable.

Facts:
- They are still predictable.

- They should be as effective as the
heuristic

-« They should be safe (i.e., be relied
upon not to create a hazard)

6/1/92 m-8

Expert Systems/Al in particular ...

Misconception: Learning an Expert
System shell is all we need to know about
Expert Systems.

Facts:

. Knowledge representation (i.e.,
language) is key to expert systems
and V&V of them

. Knowledge acquisition, reasoning
paradigms, and software engineering
are also needed skills

» Domain engineer: knowledge
centered

» System engineer: computer centered

6/1/92 1I1-9

Expert Systems
Differences

Overview

Common software misconceptions
impacting V&V have been discussed

Having "cleared the air”, we can begin to
examine V&V of Expert Systems

There are similarities and differences
between Expert Systems and other kinds of

software

These similarities and differences impact
the V&V approach

To assess this impact, these differences
and similarities need to be understood

. Different implementation languages

. Different problem types

Building a foundation for "ES-specific”
techniques to be discussed later

4/28/92 Iv-2

Experts systems are software

Expert systems are:
« Computer programs

. Written using a programming
language

. Executed in a (deterministic)
computer

A program may not be easily classified as
conventional or expert system.

. May include some but not all
characteristics

. May be part expert system, part
conventional

Problems that look expert system may be
easily (or better) solved with a
conventional solution.

4/20/92 Iv-3

Expert System Implementation

Differences

Often uses some type of "Al language”,
e.g.:
« Forward and/or backward chaining
rules

« Frames
- "Al language” characteristics

» Declarative (what) instead of
imperative (how)

» Separation of control and data (i.e.,
execution sequence is not obvious)

» Language semantics unclear or
complex (works by "magic”, e.g.,
conflict resolution)

4/20/92 Iv-4

Expert System Implementation

Differences ...

Often developed iteratively

. Especially if design by knowledge
acquisition

. Especially if it is unclear whether the
solution will work satisfactorily

No explicit algorithm is used, e.g.,

While . . . Loop
If ...
Then Call
Exit Loop
End If
End Loop

4/28/92 Iv-5

Expert System Problem Differences

Often solve problems requiring human
expertise

. Solution already exists (in someone’s
head) and is translated to a different

form

. e.g., Capturing the "rules of thumb”
of an expert and mechanically
applying them

« Often called "shallow"” or "surface
level” reasoning systems

» As opposed to model-based (or
"deep" reasoning)

» Sometimes called "design by
knowledge acquisition” as opposed
to "design by analysis™

4/28/92 IV-6

Expert System Problem Differences

Expert Systems often solve problems that
have been difficult to solve with
conventional software approaches

Sometimes rely on human judgment for
correctness of solutions (i.e., are "fuzzy")

May replace or just augment human expert

4/28/92 v-7

Two Traffic
Controller
Problems

Overview

A lot has been presented and analyzed
« V&V concepts
. Software misconceptions
. How ES V&V is different

Time to consider an example problem
. Help focus our understanding

Two problems presented
. Simple traffic controller

. "Expert" traffic controller

Later discussion of techniques will refer to
these problems

4/28/92 V-2

A Simple Traffic Controller Problem

Consider the following problem:

A simple traffic light controller at a four way
intersection has car arrival sensors and
pedestrian crossing buttons. In the absence of
car arrival and pedestrian crossing signals, the
traffic light controller switches the direction of
traffic flow every 2 minutes. With a car or
pedestrian signal to change the direction of traffic
flow, the reaction depends on the status of the
auto and pedestrian signals in the direction of
traffic flow: if auto pedestrian sensors detect no
approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15
seconds, if such approaching traffic is detected,
the switch in traffic flow will be delayed 15
seconds with each new detection of continuing
traffic up to a maximum of one minute.

04/21/92 V-3

6/1/92

Exercises

Read the problem description.

Consider the "testability” of the
description

Identify key terms from the problem
description

Construct a black-box view of this
system

Now, compare the "testability” of the
problem description to that of the
"black-box".

Predict the number of scenarios
required to comprehensively test the
system. Can this be reduced?

Exchange your results with a
neighbor. How "testable” is their view
of the problem?

V-4

Black Box View

Initial black box view of system testing

. .ﬁg %mw

N Pormcaing Traffic D»
T Bk PP
ing Tt ot »

Waiting Traffic And
Approeching Traffic

04/21/92 V-5

Refinement

Refine Requirements based on further
understanding of the problem

« State becomes evident

» What is the color of the light in a
given direction?

» How long has the controller waited to
switch the light?

- State helps identify and classify
stimulus/response histories.

- The state remaining constant might
imply testing one scenario verifies
the other scenario as well.

Continuing this refinement will lead to a
more organized test approach.

- Operational scenarios can be
constructed/selected.

04/21/92 V-6

Testing "Black Box" Scenarios

Test case scenarios can developed by
looking at the "black box"

Consider the following definitions:

switch - traffic light changes

approaching controller detects traffic in
the direction of the green
light

waiting controller detects a
waiting auto or pedestrian

Scenarios are defined as ordered pairs:

(t, event) ordered pair linking
elapsed time, t, and an
event

NOTE: This is one possible representation
of scenarios. Pick one of your own and
stick to it!

06/02/92 V-7

Testing "Black Box" Scenarios ...

The following scenarios can be generated.:

1. (2 minutes, switch)
(2 minutes, switch) ...

2. (t:t <2 minutes, approaching)
(2 minutes, switch)

3. (t:t <2 minutes, waiting)
(15 seconds, switch)

4. (t:t <2 minutes, approaching)
(t: t < 2 minutes, waiting)
(15 seconds, switch)

5.
List is NOT exhaustive

- Inifinite possibilities

06/02/92 V-8

Classes of Scenarios

The notion of testing "classes™ reduces the
number of scenarios

. Different test cases that exhibit
common characteristics

- One test case represents the class
Many options to identifying "classes™

. Based on scenarios

- Based on state
Consider using the scenarios defined

. Each scenario defines a class

- Example: Consider scenario #3

(t: t < 2 minutes, waiting)
(15 seconds, switch)

» Infinite number of values for t

» Yet, picking any one should be
sufficient to test them all

06/02/92 V-9

a-=

Classes of Scenarios ...

- Car Arrives from
the West

« No North-South
Traffic for 15
seconds following
last signal change

- Switch West-East light to
Green

06/02/92 V-10

Identification of State

o Car Arrives from .
the West

« No North-South .
Traffic for 15
seconds following
last signal change.

Pedestrian Arrives
from the West

No North-South
Traffic for 15
seconds following
last signal change

Green

. Switch West-East light to

06/02/92 V-11

An "Expert" Traffic Controller
Problem

Consider the following problem:

At certain times of the day an intersection
becomes congested, the electronic traffic light
controller becomes inadequate and a
policeman is used to direct the traffic. The
same policeman has been directing traffic at
this intersection for a number of years and
there are much fewer complaints from citizens
about having to wait at this intersection (than
there were several years ago). It is now
desirable to make the electronic system
"smarter” so it can handle the same amount of
flow as the policeman while being as fair as the
policeman (i.e., he doesn't force any one
direction to wait for a longer time than another

direction).

06/02/92 V-12

An "Expert" Traffic Controller
Problem ...

The new system will function as before when
traffic is "light” and will switch to "smart mode"”
when the traffic becomes heavy. In "smart
mode", the system will look at

. the length of traffic in each direction (new
sensors will be installed to provide this
information)

. the number of people waiting to turn left
as opposed to going straight (new
sensors will be installed to indicate how
many people are waiting in the left turn
lane)

. the speed of traffic going through the
intersection (new sensors will be
installed to provide this information)

06/02/92 V-13

06/02/92

Exercises

Read the problem description.

What are the differences in the two traffic
controller problems? Predict the impact
to the V&YV of the traffic controller.

Consider the "testability” of the
description

Identify key terms from the problem
description

Construct a black-box view of this system

Now, re-consider the "testability” of the
problem description.

Exchange your results with a neighbor.
How "testable"” is their view of the

problem?

Compare this description with that of the

first traffic controller? What are the

differences? Were they what you
expected?

V-14

Knowledge Acquisition Results

Initial knowledge acquisition from the
policeman reveals the following:

. the policeman walks a beat a few
blocks from the intersection and
when he hears several horn honks
close together, he goes to the
intersection to help clear the traffic

. if the line is so long in any direction
that he can't see the end of it then he
lets those directions (including
turning left) go for about three
minutes before changing

. otherwise, he lets each direction go
for about two minutes, except for
turning left which he allows for about
one minute

06/02/92 V-15

Knowledge Acquisition Results

Initial Knowledge Acquisition ...

06/02/92

He lets the longest direction go about
half a minute longer than the other
directions

If the line waiting to turn left is small
when compared to the opposing
direction, he will skip them for one
cycle (i.e., let each other direction go
once more)

If the line waiting to go straight is
small, compared to the perpendicular
direction, let it go for half a minute
less

If you can notice a car that has been
waiting for three cycles and has not
gone, let that direction go half a
minute longer (that line is just
moving slow; this roughly
corresponds to less than 20 cars per
cycle for 3 cycles).

V-16

Exercise

Analyze these high level results

. Look for conflicting statements

. Identify some test scenarios that will
determine if this solution seems to
satisfy the goals

« Think of some scenarios that this
solution does not seem to cover.

. Discuss whether this is an expert
system problem or not

06/02/92 V-17

Problem Features

Is the solution being created for the first
time or does it already exist in someone's

head ?

Is it a shallow or deep reasoning solution?

Would this be difficult to solve with
conventional software?

Does it rely on human judgment?

Will it replace or augment a human
expert?

06/02/92 V-18

Two Implementations

Two different traffic controller problems
have been analyzed

Expert System problem differences have
been studied

What about Expert System implementation
differences?

Three implementations of the simple TLC
will highlight these differences

. Two Expert System implementations
using a "pseudo” rule-base language

» One is well-structured
» One is not

"« A procedural implementation ina
"pseudo” procedural language

06/02/92 V-19

06/02/92

Exercises

Study the procedural implementation
shown in handout #2

- Consider the state diagram of
Handout #1 for this implementation

Study the unstructured implementation
of Handout #3

Study the structured ES
implementation shown in Handout #4

Define an approach for doing V&V on
each solution.

Describe how the implementation
impacted the V&V approach.

V-20

Conventional Implementation

Loop
Case State Is

When Sl and Time Expires =
State = SL,
When S1 and (Approachmg Or
Light Changes) =
State = Sl;

End Case;
End Loop;

%tv‘inmkSl d (NO hing and
an
A
State =
Wthland(App:mchmgOr
LxﬂnChanga)

State = SL;
RsetZMnmneTimer,

thnSZandNO’Iéz;Txma‘Expued

When S2 and Txmscg Expired =

06/02/92 V-21

Expert System Implementation

If time expires Then switch light
If in S1 and approaching Then start S1
If in S1 and waiting Then start S2

If timer expires Then
switch licht and retract timers
hgtchangworappmachmgThen

Setshortandmedlmntlmers

06/02/92

Comparison and V&V Implications

Expert System approach turned out to be
easier/shorter.

 Production rules directly map to state
transitions

» if (old state) then (new state) (and
action)

. Pattern matching simplified the rules

» (3-4 times the number of "whens" as
rules).

. Procedural approach wound up
implementing a crude inference
engine. -

» A loop with a big nested case
statement in it.

Therefore V&V should be easier on expert
system implementation, right?

06/02/92 v-23

Comparison and V&YV Implications ...

Procedural approach has fewer and simpler
internal interactions.

. Execution order of comparisons in
procedural approach is very explicit

» whens "executed"” exactly once per
"cyclell

» as opposed to use of priorities to
control execution

 Pure functions (no side effects)

» Procedure "Change_Light" affects
several rules

- No "garbage collection” concerns

» Rule-base implementation must
retract old facts

Therefore, because there are more subtle
things to be tested in the expert system

approach, it should be harder to V&V,
right?

06/02/92 V-24

Comparison and V&V Implications ...

0—x Each implementation approach has
different V&V concerns.
Procedural concerns
. More decisions to test (more code)
. Overall control structures (e.g., loop
termination)
Expert System concerns
. Test correct garbage collection
. Test for invalid rule interactions.
- Must test function side-effects.

- Test that rule patterns are not too
broad

« Test that rules only fire at the right
time

06/02/92 V-25

Comparison and V&YV Implications ...

Different concerns need different test
approaches/techniques

Both must show a correct solution

Emphasis is different
- e.g., ES must demonstrate no
undesirable side-effects
Different view of expert system V&V
- ES failures relate to a different
computation model
Kinds of errors humans make:

- Slips/Lapses:(overlapping rule
sequences)

« New exceptions:(LHS too broad)

- Erroneous beliefs: (bad rules)

06/02/92 V-26

Tésting Good and Bad Rule Based Designs

The design of expert systems can greatly
simplify the new testing concerns.

The unstructured version (Handoui #3):

« Fewer rules

More complex rules

Less modular

More rule interactions

Has a subtle problem (can you spot
it ?) .

The shorter version is harder to analyze
(and thus to verify).

The longer version can be tested in pieces.

06/02/92 V-27

Cohesion and Coupling

Cohesion: Connections within a module

Coupling: Connections between
modules

"Cohesion”

Loose coupling reduces interface problems

Strongly cohesive means modules are
"atomic" or "primitive”

These are the easiest to V&V

6/12/92 V-28

Planning for V&V

Vi

Overview

As we will see later, there are many V&V
techniques

Ad-hoc application of techniques will make
correctness more difficult to assess

We need a plan

. Planning directly impacts V&V
serves as the framework for

« Planning

the systematic application of V&V
techniques

. Therefore, poor planning increases
the likelihood that V&V will be

ineffective

Before discussing how to plan, let's
consider some issues related to planning

4/20/92 VI1-2

Issues in Planning for V&V

The following issues represent common
pitfalls that can resuit from poor planning

These issues relate to development of
software in general and to the
misconceptions previously discussed

However, Expert Systems may be more
sensitive to poor planning

. Heavy reliance on experts16

. Problems are often ill-defined4

. So many projects are only viewed as
prototypes (yet, they often become

"operational”)16

4/28/92 VI-3

Issues in Planning for V&YV ...

"Operational” prototypes

« This prototype looks so good, why

can't we use it now?

Unfortunately, small scale solutions
rarely scale-up to complete solutions

Need a defensible development plan

Performing V&V at the end of the
development cycle

4/20/92

Combined Black/White Box testing

"It is not uncommon to spend 30 to
50 percent of the ... cost ... for the
verification effort when using the

after-the-fact approach"15

"Testing should be integrated into the
development-application cycle"23

Case study #2 resulted from this

Need a plan for doing V&V "as you
go"

VI-4

Issues in Planning for V&V ...

Unavailability of resources impacting
testing

. e.g., special hardware, simulators,
expert analysts, etc.

. Without a plan, resources are initially
assumed to be available on demand
and affordable

. From experience we know they rarely
are3

. Need a plan for capturing availability
and cost of resources

4/20/92 VI-5

Issues in Planning for V&YV ...

Inconsistent/incomplete/Missing work
products

. Estimated 2:1 cost ratio between
development and maintenance®

» Missing work products must be
re-created (Reverse

Engineering?)
. Documenting the wrong information

 Inconsistent use of information
(conceptual integrity6)

. Planning should focus on building
maintainable systems

» kinds of work products, format of
products, intended users

4/20/92 VI-6

Issues in Planning for V&V ...

Implementation approach does not match
the problem

. Makes V&V more difficuit
. Problem determines the approach

- "Many problems that occur ... are the
result of ... generating code without

thinking about the design”19
. Plan to follow a logical sequence

Even small design changes result in
significant amounts of re-work

. Typical of non-modular systems

. Want to build similar applications
from existing "verified" ones

. Plan to minimize re-work (maximize
re-use)

4/20/92 VI-7

6/1/92 VI-8

Issues in Planning for V&YV ...

Inordinately large costs incurred at the end
of the development cycle

- "Pay me now or pay me later”
- Difficult to predict end cost

« Maintenance costs can also increase

- Plan to:
» Find and correct errors early

» Define when to stop testing37

Building the wrong user interface

- "... there is now less excuse than ever
for not involving users early on ..."3

« "The only question is whether you or
your customer will discover them

(user interface errors)."31

 Plan for early user involvement

Issues in Planning for V&V ...

Ineffective testing

. Even worse, minimal insight into why
testing was ineffective

. Can result from vague system
objectives

. Can result in higher testing costs

. Compounds problem when testing is
left to the very end

« Planning will help focus test
objectives which drive test selection

» "A comprehensive test-

management approach
recognizes the differences in
objectives and strategies of

different types of testing"39
» Define testability40

4/20/92 VI-9

Issues in Planning for V&YV ...

We have looked at some key issues related
to planning

These issues can help guide us in building
a plan

Any V&YV plan should consider the
following

- In theory, every project has sufficient
time and resources to do a
competent level of V&V

- In reality, most projects do not
achieve this level of V&V because
time and resources are constrained

« Planning for V&V can bridge the gap
between reality and theory.

4/20/92 VI-10

Issues in Planning for V&V ...

In summary, a good plan needs to satisfy
two goals

. Finding an approach to the problem
» Representation vs. Problem
» Situation vs. Technique
» Technique vs. Representation

. Deciding what you need to do the job
» Availability of resources
» Realistic schedules and cost

» V&V is part of your job
» Do not forget maintenance!

With this in mind let's consider a
framework for V&V planning

4/20/92 VI-11

Framework for V&V Planning

Involve user's early in development

« Use prototyping
» Provide some resulits early
» Develops problem understanding

» Discussed in the "Techniques”
section

« Helps define validation testing
Pick a life-cycle model and follow it

. Include the 3 test phases discussed
« Guides the application of techniques

« Helps decide what "work products™
to generate

4/20/92 VI-12

Framework for V&V Planning ...

Plan for an approach that minimizes re-
work (i.e., maximizes re-use)

. Decide on an approach for applying
modularity

Plan for an approach that matches the
problem

. Remember, the goal is to build
something that correctly solves a

problem

. The goal should never be to build an
Expert System

Define what correctness means

- Vague objectives are satisfied by any
implementation

6/1/92 VI-13

Framework for V&V Planning ...

Prioritize the kinds of correctness you wish
to demonstrate

« Many kinds of criteria to consider

» Complexity, Criticality of the
software system

» Type of problem to be solved

« Test at the highest levels of priority
and work your way down

» Framework for applying
resources

4/20/92 VI-14

Framework for V&V Planning ...

Identify areas of risk and a plan to respond
to those risks

. Many risks in software development
» Changing requirements
» Availability of resources

. Assess risks and impacts early

Plan for doing ""smarter" testing

. Focus on finding errors early

. Match testing techniques to desired
correctness

» Will help identify required
resources

- Record the plan

4/20/92 VI-135

Exercise

1. Reconsider the part that planning
played in the Apollo 11 scenario

2. Suggest how better planning could
have possibly prevented this situation
from ever happening

3. Develop your own plan for V&V'ing the
Apollo 11 software

4. Develop a plan for Verifying and
Validating your team exercise.

6/1/92 VI-16

Summary of Basic
Concepts

PP EET.Y. Y

o—r_Key Points

There is a difference between
Verification and Validation

. Verification: building the system
right

. Validation: building the right system

Three important phases to testing
software

. Static: desk checking/code reviews

. Unit/Integration: testing in pieces

. System: Overall V&V

Test phases have an implied order that
can aid in applying V&V

 Focus on phases that find errors
early

. Pick a life-cycle and follow it

vVILLY

aA701Q7

o—=_Key Points ...

Three main aspects to demonstrating
correctness

- Completeness: Does all it should
« Consistency: Does it correctly
« Termination: Output will always be

generated for any given input

Using abstraction and refinement aids
in human analysis of software

« Abstraction: Suppress details

« Refinement: Incremental abstraction

V-3

A4 1%0 IOND

o—=_Key Points ...

Modularity has many positive benefits
for analysis/development of software

. Divide and Conquer
. Simplifies system comprehension

. Aids work-load management

AVA L Y-

Common Software Misconceptions

Many misconceptions presented and
analyzed

Two categories

. Software in general
» Development work products

» Use of formality and proofs

. Al/Expert Systems in particular
» Expert Systems are "magic”

» What constitutes and Expert System

» Heuristics
All have negatively impacted V&V

Should not be a roadblock anymore

4179100 VII-5

Expert Systems Differences

Many similarities and differences between
Expert Systems and other kinds of
software were presented

Similarities:
- Experts systems are software

« Difficult to classify software as
conventional or expert system.

« Problems that look expert system
may be easily (or better) solved with a
conventional solution

4O INA \VTT.A

Expert Systems Differences ...

Differences fall into two categories

- Implementation
» Uses some type of "Al language”
» Developed iteratively

» No explicit algorithm

- Problem

» Often solve problems requiring
human expertise

» Often solve problems that have been
difficult to solve with other
approaches

» Often rely on human judgement

» Focus on replacing or augmenting a
human expert

Planning for V&V

The need for planning was discussed
. Planning directly impacts V&V

. Planning serves as the framework for
the systematic application of V&V

techniques

. Therefore, poor planning increases
the likelihood that V&V will be

ineffective

APOOD VTI-R

Planning for V&V

Examined many issues that can help focus
our planning

"Operational” prototypes

Performing V&V at the end of the
development cycle

Unavailability of resources impacting
testing

Inconsistent/incomplete/Missing
work products

Implementation approach does not
match the problem

Even small design changes result in
significant amounts of re-work

Inordinately large costs incurred at
the end of the development cycle

Building the wrong user interface

Ineffective testing

3T O

Planning for V&V

Based on these issues a good plan needs
to satisfy two goals

« Finding an approach to the problem
» Situation vs. Technique
» Representation vs. Problem

« Deciding what you need to do the job
» Availability of resources
» Realistic schedules and cost

» V&V is part of your job

» intenance!

Two Traffic Controller Problems

Two problems presented
. Simple traffic controller
. "Expert" traffic controller

Focus our thoughts on topics discussed

« V&V concepts
. Software misperceptions
« How ES V&YV is different

Discussion of techniques will refer to these
problems

A0 /O Vil-11

Appendix A:
References

1.

References

Baxter, LD.. "Design Maintenance Systems".

Communications of the ACM. April 1992.

2.

Beckman, F.S.. Mathematical Foundations of

Programming. Addison-Wesley Publishing, 1980. .

3

A complete book that explores the mathematical basis
of programming. Issues such computational
complexity, grammars, effective procedures, Turing
machines, etc. are discussed in some depth.
Recommended reading for someone desiring a better
understanding of the theory behind programming.
This theory helps support many of the approaches to
V&V.

Behrendt, W., Lambert, S., and Ringland, G.. "An

Outline Model for Reasoning about KBS Projects and
Development Risks". Heuristics. Volume 4 Number 4, pp.
30-38, Winter 1991.

A short article that lists some interesting things to
consider when planning a KBS project. These
considerations apply to software in general.

4/16/92 A-2

References ...

4. Bell, M.Z.. "Why Expert Systems Fail". Journal of the
Operational Research Society. Volume 36 Number 7, pp.
613-619, 1985.

5. Boehm, B.. "Industrial Software Metrics Top 10 List".
IEEE Software. Volume 4 Number 5, pp. 84-85, September
1987.

6. Brooks, F., The Mythical Man Month, Addison-
Wesley, 1975

The classic book on software engineering. It is a
collection of personal observations on software
development. Although the book is many years old,
the observations are just as true today as they were 15
years ago. This book is very highly recommended
reading.

7. Chikofsky, E.J., and Cross, J.H.. '"Reverse
Engineering and Design Recovery: A Taxonomy". IEEE
Software. Volume 7 Number 1, pp. 13-17, January 1990.

A very good article that explains some the issues
involved with trying reverse engineer a system.
Highly recommended reading.

4/16/92 A-3

References ...

8. Davis, J.S.. "Effect of Modularity on Maintainability
of Rule-Based Systems". International Journal of Man-
Machine Studies. pp. 439-447, 1990.

9. Downs, T. "Reliability Problems in Software
Engineering - A Review." IEEE Software Volume 2 No. 3
pp- 131-147, July 1987.

10. European Space Agency. Software Verification and
Validation. Document No. PSS-05-0 Issue 2 p. 2-22,
February 1991.

Excerpt from a European Space Agency document
outlining their approach to V&V of space software.
Input from the Europeans is good because, in many
respects, they are ahead of the U.S. in applying V&V
approaches.

11. Fox, M.S., "Al and Expert System Myths, Legends,»

and Facts", IEEE Expert, Feb. 1990

Contains personal observations by the author that help
explain some causes of ineffective Al applications;
many are due to a misunderstanding of Al technology.

4/28/92 A-4

References ...

12. Guttag, J.V., "Why Programming is Too Hard and
What to Do About It", Research Directions in Computer
Science: An MIT Perspective, MIT Press, 1991

Contains personal observations by the author on the
difficulties in software programs. The author, a
respected professor and researcher in software
development techniques, offers some very candid
opinions in this paper.

13. Hall, A., "Seven Myths of Formal Methods", IEEE
Software, September, 1990

14. Kamel, R.F.. "Effect of Modularity on System
Evolution". IEEE Software. pp. 48-54, January 1987.

15. Kemmerer, R.A.. "Integrating Formal Methods into
the Development Process". IEEE Software. pp. 37-50,
September 1990.

16. "KBS V&V - State of the Practice and Implications
for V&V Standards”

This paper is included in the references section. It
summarizes a survey that was performed of 60 expert
system projects to determine what techniques were
currently being used to V&V expert systems and what
difficulties were being encountered.

4/16/92 A-5

References ...

17. Laufmann, S.C., DeVaney, D.M., and Whiting, A.. "A
Methodology for Evaluating Potential KBS Applications".
IEEE Expert. pp. 43-62, December 1990.

This paper provides a detailed checklist for evaluating
whether a given application has potential as a KBS.

18. Leveson, N.G.. "Safety." Aerospace Software
Engineering: A Collection of Concepts. Ed. Christine
Anderson and Merlin Dorfman. Volume 136 pp. 319-336,
American Institute of Aeronautics and Astronautics,

Publisher. 1991.

This and other articles by Leveson, et.al. are easy to
read, informative articles discussing, at a high level,
issues in demonstrating safety correctness in software.

19. Linger, R.C., Mills H.D. and Witt, E.I. Structured
Programming: Theory and Practice. Addison-Wesley
Publishing Company 1979.

A text book describing the foundations of structured
programming. This book, not only covers the theory
behind structured programming, but provides the
information needed to apply structured programming.

4/16/92 A-6

References ...

20. Leveson, N.G.. "Software Safety In Embedded
Computer Systems." Communications of the ACM. Volume
34 No. 2, February 1991.

21. Liskov, B. and Guttag, J.. Abstraction and
Specification in Program Development. McGraw-Hill
Book Company 1986.

A complete text book on the use of abstraction and
refinement to help in program development.
Recommended reading for those who want a thorough
understanding of how to use abstraction and
refinement as a tool for specifying program behavior.

22, Maibor, D.S.. "The DoD Life Cycle Model."
Aerospace Software Engineering: A Collection of
Concepts. Ed. Christine Anderson and Merlin Dorfman.
Volume 136 p. 34, American Institute of Aeronautics and
Astronautics, Publisher. 1991.

23. Marcot, Bruce. "Testing Your Knowledge Base." Al
Expert, July 1987

This article offers some practical advice for testing
knowledge bases by listing some Vvery general
guidelines. It also has a good detailed list of types of
correctness.

4/16/92 A-7

References ...

24. Miller, L.A.. "Dynamic Testing of Knowledge Based
Systems Using the Heuristic Testing Approach”. Expert
Systems with Applications, Volume 1 Number 3, 1990.

A good article that describes the prioritization
approach to planning a test approach.

25. Mills, H.D.. "Structured Programming: Retrospect
and Prospect." IEEE Software Volume 3 No. 6, November
1986.

The Mills, Myers, and Parnas references provide a
thorough understanding of the use of modularity in
program development. Not only as a tool for easing
development, but also as a foundation for
demonstrating program correctness. These are

classics in the Software Engineering field.

26. Mills, H.D., Linger, R.C. and Hevner, A.R.. "Box
Structured Information Systems." IBM Systems Journal
Volume 26 No. 4, 1987.

27. Mills, H.D., Linger, R.C. and Hevner, A.R.
Principles of Information Systems Analysis and Design.
Academic Press, Inc. 1986.

4/28/92 A-8

References ...

28. Myers, GJ.. Software Reliability Principles and
Practices. John Wiley & Sons, Publishing 1976.

29. Myers, G.J.. Reliable Software Through Composite
Design. Mason/Charter Publishers 1975.

30. Myers, G.J.. CompositelStructured Design. Litton
Educational Publishing 1978.

31. Nielsen, J.. "Big Paybacks from 'Discount Usability
Engineering". IEEE Software. Volume 7 Number 3, pp.
107-108, May, 1990.

32. Parnas, D.. Software Engineering Principles.
Department of Computer Science, University of Victoria.
Report No. DCS-29-IR, February 1983.

This reference and others by Parnas represent classic
work done by this respected practitioner of software
engineering. These are highly recommended reading.

33. Parnas, D.. "On the Criteria To Be Used in
Decomposing Systems into Modules.” Communications of
the ACM Volume 15 No. 12, pp. 1053-1058, December
1972.

4/28/92 A-9

34.

References ...

Parnas, D.L., Clements, P.C., "A Rational Design

Process: How and Why to Fake It", IEEE Transactions on
Software Engineering, Feb. 1986

35.

Describes why one would wish to document a product
as if it were designed according to an idealized
development process/methodology, even if was
developed in a very ad-hoc manner. Also includes
suggestions on what the documentation of a product
should contain.

Rumbaugh, J.., Object-Oriented Modeling and

Design. Prentice-Hall, Inc., 1991.

36.

Schank, R.C., "Where's the Al ?", Al Magazine,

Winter 1991

37.

A very readable description of some personal
observations by the author on some difficulties in
developing truly intelligent systems. This article is
highly recommended reading.

Sherer, S.A.. "A Cost-Effective Approach to Testing".

IEEE Software. pp. 34-40, March 1991.

4/28/92 A-10

References ...

38. Stevens, W.P. and Myers, G.J. and Constantine, L.L..
"Structured Design". IBM Systems Journal Number 2 pp.
115-139, 1974.

The classic paper on modularity.

39. Wallace, D.R. and Fujii, R.U.. "Software Verification
and Validation." IEEE Software Volume 6 No. 3 pp. 10-17,
May 1989.

A very good article stating high level objectives and
techniques for verifying and validating conventional
software.

40. Voas, J., Morell, L. and Miller, K.. "Predicting Where
Faults Can Hide from Testing". IEEE Software. pp. 41-48,
March 1991.

41. Wilson, W.M.. "NASA Life Cycle Model.” Aerospace
Software Engineering: A Collection of Concepts. Ed.
Christine Anderson and Merlin Dorfman. Volume 136 pp.
319-336, American Institute of Aeronautics and
Astronautics, Publisher. 1991.

4/16/92 A-11

Workshop On
Verification and
Validation of Expert

- Systems

Techniques

Authors:

Scott W. French
FRENCHS@HOUVMSCC.VNET.IBM.COM

David Hamilton
HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation
3700 Bay Area Blvd.
Houston, TX 77058

7 \
I
N\ 2,

7=

——

Verification

1

idation

£

Table of Contents

L Introduction
Overview I-2
. General Techniques
Regression Testing -2
Prototyping 0-2
Competing Designs -3
Independent V&V 1I-3
Inspections. n-4
Decision Tables -5
Cause-Effect Graphing 1I1-9
State Diagrams II-10
Sensitivity Analysis O-11
Testability Analysis o-12
IIL. System Testing Techniques
Realistic Testing -2
Attribute-based Test Case Selection III-2
Boundary-Value Testing -3
Stress Testing -3
Active Interface Testing. Ii-4
Performance Testing. II-4
Knowledge Acquisition Correctness -5
Minimum Competency Testing -8
Disaster Testing. III-9
Expert Review IN-10
Explicit Modelling... Im-11
IV. Unit/Integration Testing Techniques
Coverage Techniques IV-2
InterProcedural Dataflow Testing Iv-§
Flavor Analysis Iv-7
Mutation Testing. Iv-8
Reliability Testing Iv-9
Prototype Evaluation IV-9
Structural Testing IV-10

06/02/92

Table of Contents ...

V. Static Testing Techniques

V-2
Anomaly Analysis - va
Object-Oriented Anﬂyﬂs v
Compilation Testing. My
Defect Analysis - My
Axiomatic Analysis My
Swpw’l.e Reﬁnenmt Myl
Symbolic Euclmon MR
Hazard Analysis M
Fault Analysis M
Software Fault Trees - Mo
Rule Consistency Chaehng Mg
Data Consistency Checking . : My
Specification-Directed Analysis Myt

VL. Summary

VI-2
Techniques

06/02/92

Introduction

[~ |

Overview

This section will summarize some key
techniques

. There are others
. Those presented are some of the best

. Applicability to ES and/or
Conventional software addressed

Each technique will be discussed in terms
of

Over all description

Implementation

Error detection capability

Available tools

Examples based on the Traffic Light
problem

4/28/92 I-2

Overview ...

Techniques will be grouped by test phases
where they apply

- One exception: some important
techniques are applicable to many

phases
« These are categorized as General
Techniques
System Testing Unit / Integration
Testing
Phases of Comectness Phases of Correctness
Requrements L———»P)suﬂcst WM\———»/SMI&
Desgn | ———> | hiegraiion Test Desgn | ————> | hiegration Test
(ode \ —/ ntlest (ode \ ——>»/ (ntiest
Static Testing Static Testing

04/21/92 I-3

General
Techniques

-

General Techniques

Regression Testing

Typically a maintenance activity

Requires some process for capturing and
retrieving test cases

Example: Change the controller so waiting
traffic can wait up to 1.5 minutes

. Scenarios with no waiting traffic for 2
minutes should work as before.

Prototyping

Develop a working model to test aspects of
requirements or design

E.g., prototyping might reveal the need for
a yellow light.

4/28/92 II-2

General Techniques ...

Competing Designs

Define multiple design teams
Each team designs a solution

Select the best or merge solutions

Independent V&V

Pick an independent team to perform V&V
on the software

Independence avoids potential bias

Applicable anywhere in the process
. Commonly applied at System Test

4/28/92 -3

General Techniques ...

Inspections
Review of work products

Formal/Informal (or walkthrough)

« Follows a set of rules governing
review

- Many roles
Continuous inspections
« Frequent review of smaller items

- Best approach when applying
stepwise refinement

Major advance in the practice of V&V

» Creates "active verification frame of
mind”

« An estimated 60% of errors can be
found during inspection4

04/21/92 -4

General Techniques ...

Decision Tables

Very popular in the early and mid '70s

Originally considered a complete
development methodology

Really is a specification approach

Very similar to rule-based programming
» Left side := condition columns
» Right side := action columns

» A row is called a rule

Has some differences from rule-based
programming

» No pattern matching or unification

» No chain of inference

4/28/92 II-5

‘General Techniques ...

Decision Tables ...

Completeness checking
- Figure total number of rules

» Product of number of possible
entries in each column

- Ensure each rule is considered

Consistency checking similar to rule
consistency checking

- Redundancy, overlapping rules
- Contradictory rules

- etc.

04/21/92 -6

General Techniques ...

Decision Tables ...

Example: Complete TLC solution (25*6=192
rules; see handout #1)

Appro- | Wait- | 2 Min 1 Min | 15 Sec | Current | New Change
aching |ing Timer | Timer | Timer | State State Light
Vehicle | Vehicle | Expires | Expires Expires

0 0 0 0 0 1 1 0

1 0 0 0 0 1 1 0

0 1 0 0 0 1 3 0

Example: Abstract TLC solution (25*2=64
rules; see handout #1)

Appro- | Wait- | 2Min |1 Min |15 Sec | Current | New Change
aching |ing Timer | Timer | Timer | State State Light
Vehicle | Vehicle | Expires | Expires Expires

0 0 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 1 0 0 0 1 2 0

6/1/92

-7

General Techniques ...

Decision Tables ...

Practical and effective if used on small
modules

Example: Timer module (23 = 8 rules)

Setfor | Expired | Error Expires= Set Time Print
True Message

""Q""O'-‘O'-‘Qg

= OO = OO
i = OO (OO
N QO 9= O
VIO VI|CO|I=]IO
|||]|OlOIO

Class Exercise: Answer the following

What action do you think should be in the
"question mark" rule entries?

- What does the Timer module really
do?

04/21/92 -8

General Techniques ...

Cause-Effect Graphing

Technique for selecting tests that exercise
combinations of causes

Highlights interesting cases

And entity
eIV
<

Ca)2 Not

04/21/92 -9

General Techniques ...

State Diagrams

Views a system as state and transitions

States are "'nodes"” and transitions are
"arcs"

Simple Traffic Light
State Machine

P o -
- .- -

\.
T e TS

Transitions map to causing conditions

NOTE: Helps analyze abstract system
behavior during system test

04/21/92 a-10

General Techniques ...

State Diagrams ...
Translates to a matrix

Place a 1 at each (Si, Sj) where Sj -> Sj

Red Green
Red| 0 1
Green 1 0

Highlights interesting system properties

Sensitivity Analysis
Assess system sensitivity to change

"Graphing" techniques are helpful

Primarily an analysis technique as opposed
error finding technique

Supported only by a research tool

Directly benefits classification problems

4/28/92 II-11

General Techniques ...

Testability Analysis
Estimating the presence of "hidden" faults

- "If the presence of faults in programs
guaranteed program failure, every
program would be highly testable."49

Three main parts to the estimation

- Execution Analysis: Probability a
given component is executed

- Infection Analysis: Probability that a
component is sensitive to errors

- Propagation Analysis: Probability

that an "infected" component will
affect "what the user sees”

Low numbers imply low testability
- Infer larger dynamic test costs

- Static testing would be beneficial

04/21/92 O-12

General Techniques ...

Testability Analysis ...

Approach to Execution analysis
. Run random cases
. Count component executions

. Example: Consider rules
Update_Time and Del Old_Changes
from Handout #3

» Update_Time has a ratio of 1
» Del_Old_Changes has a ratio of 0

» Which is more "testable"?

4/28/92 II-13

General Techniques ...

Testability Analysis ...

Approach to Infection analysis
. Build component mutations
- Apply to mutant and non-mutant
. Count # of different resuits

. Exémple: Consider mutations of
Update_Time and Del_Old_Changes

» Del_Old_Changes ratio is near 0
(why?)

» Update_Time ratio is near 1 (why?)

4/28/92 -14

General Techniques ...

Testability Analysis ...

Approach to Propagation Analysis
. "Break" after component executes
. Change data state and continue
. Look for cases with different results

- Example:

» Set breakpoints after Update_Time
and Del_Old_Changes

» Perturb the fact list

» What effects would you expect in the
result?

4/28/92 II-15

6/1/92

Exercises

Define the "black box" view for your
team exercise.

Identify key terms from the problem
description.

Which of the following techniques
would you use? Explain your
answer.

« Prototyping

. Competing Designs
. Independent V&V

« Inspections

Do a very high level specification for
your system using one of the
following techniques

« Decision Table
« Cause-Effect Graph
« State Diagram

-16

System Testing
- Techniques

04/21/92 m-2

System Testing Techniques

Realistic Testing

Focus on those functions used the most.

Realistically, more autos wait than
pedestrians.

. Therefore, select scenarios that
involve waiting autos.

Attribute-based Test Case Selection

Choose test cases based on an attributes
. Complexity, Criticality, Reliability, ...

Tests can be chosen according to

. Statistical Record-keeping
- Random
« Error Guessing

Example: More complex scenarios include
both waiting and approaching traffic.

System Testing Techniques

Boundary-Value Testing

Identifies cases at the boundaries of each
stimulus/response class

Example, Approaching traffic is detected at
the same instant a timer expires

. Exercises the boundary value of
when the timer should expire

Stress Testing

Choose "off-nominal” tests to test safe
operation in stressful/critical situations.

Examples:

. Pedestrian repeatedly hits the change
signal button?

- Power surge occurs when a car trips
the change signal button?

04/21/92 -3

System Testing Techniques ...

Active Interface Testing

Test the interface to an external agent (e.g.,
a person)

Examples:
« Auto weight required to trip signal

« Pedestrian signal button sticks

Performance Testing

Choosing tests that "push the envelope™
(speed, accuracy, etc.)

Examples:
- Effect of hardware delays

» e.g.,Signal tripped at t9+14.999

04/21/92 m-4

System Testing Techniques ...

Knowledge Acquisition Correctness
Checking

Looking for inconsistencies and "holes" in
knowledge acquired from the expert.

Similar to analyzing system requirements.

Made easier by representing the knowledge
in a consistently structured form.

Example: How does the expert traffic
controller know when to stop and go back

to conventional mode?

4/28/92 mI-5

System Testing Techniques ...

Knowledge Acquisition Correctness
Checking ...

Consider the following approach for
finding inconsistencies and "holes™:

- Only do things that "make sense”
« Ensure proper sequence

- Example: Checking both timers
when only one should be checked

Step 1: Verify no conflicting sequences
- Rules, questions, facts, etc.

« Build a matrix mapping these (e.g., a
rule-to-rule matrix)

« Mark possible conflicts with an "X"

» Checking both timers can result in

changing the light at the wrong time

4/30/92 -6

System Testing Techniques ...

Knowledge Acquisition Correctness

Step 2: Establish "master"/"subject”
relationships to resolve conflicts

. E.g., determine what should happen
first

. Example: Do not use the short timer
unless traffic is waiting
Step 3: Compare "legal” values of
"master” to "utilized" values of subject
. "Legal" values = all possible values
. "Utilized" values = values used

. "Subject” vs. legal values of "master”

» A matrix with an "X" for each conflict

Helps build "sequence” expressions

4/30/92 m-7

System Testing Techniques ...

Minimum Competency Testing
Certifying the competency of an expert
system

« "Test” as would a human expert

Certification exams exist for many types of
human experts.

« CPA, MD, PE

Assumes the ES will make same errors as
the expert

Expert can be asked to identify abilities of
a novice, advanced beginner, etc.

Similar to statistical testing (exam is a
representative sample)

Discussion: Develop a certification test for
the "expert” traffic controller.

4/30/92 -8

System Testing Techniques ...

Disaster Testing

Identify scenarios that indicate potential
disaster (during knowledge acquisition)

. Experts are often good at recoghizing
potential disasters

. Many disaster situations are
"common sense”

Generate tests to check that the system
responds to potential disasters

. Use with specification-directed
verification (disaster = specification).

. Example TLC disaster: Lightis red in
all directions

4/30/92 1I-9

System Testing Techniques ...

Expert Review

Some answers can only be judged correct
by the expert.

Experts can check test scenarios/results

Expert may not understand implementation
details

With minimal training, an expert can check

« Acquired knowledge
» Miscommunication
» Gaps in the knowledge

« Knowledge base design
» Correct approach
» Correct interpretations

Format the review material so the expert
can easily understand it. ~

4/30/92 M-10

System Testing Techniques ...

Explicit Modelling

Different kinds of models:
. Set of equations

. Small scale replica (e.g., toy airplane
model)

. Metaphor (i.e., making analogy)

. Any simplified representation ofa
system -

"Instead of having no models in a KBS,
there are often a multitude of unexpressed

models;"2

4/30/92 m-11

System Testing Techniques ...

Explicit Modelling ...

Different people may each have a different
model for the same system (but should all
be consistent)

+ Client (e.g., traffic control system)

« User (e.g., traffic light switching
system)

- Developer (e.g., state machine)

Helps with V&V by facilitating abstraction

Leads into model-based reasoningS0

4/30/92 m-12

System Testing Techniques ...

Explicit Modelling ...

The concept of modelling is
straightforward, practice can be difficult

. ldentifying a suitable model
. Mapping the model to the system

. Reasoning about the model

However difficult, it is usually worthwhile

. Models are always created14. They
are often implicit (not documented).

. An explicit model can make the
system easier to understand; this
helps all aspects of development and
use.

4/30/92 HI-13

System Testing Techniques ...

Explicit Modelling ...

Example: Timer module

. Timers are countdown clocks with
alarms

. Asserting a timer creates a new clock
which begins to count down to zero

. Alarm goes off when the clock counts
down to zero

Example: CLIPS inference engine

« There are 2 lists of rules: KB and
agenda.

« There is a list of facts.

« Each cycle, the inference engine
goes through the KB list and the
fact list, picking rules to put on the
agenda.

4/30/92 ImI-14

6/1/92

Exercises

Define 1 or more "realistic” test cases
for your team exercise

Define some attributes of your
system. Define 1 or more test cases
based on the attributes you defined.

Define 1 or more test cases that do
"boundary value” testing.

Define 1 or more test cases that
"stress” the system.

Define the external interfaces to your
system. Define 1 or more test cases
to test those interfaces.

Define 1 or more test cases to test the
system's performance.

For each question, indicate how the
results of each test case will be
analyzed (i.e., how you will know the
answer is correct).

m-15

10.

11.

12.

6/1/92

Exercises

Did the problem description provide
enough detail to adequately perform
the tests from questions 1-6.

Develop a certification test for your
system.

Identify system "disasters™ (i.e.,
things that should not happen).
Explain how you will test your system
for these "disasters”.

Will your project need the aid of an
expert (provide rationale)? If so,
indicate the kind of expert required
and the type of analysis to be
performed.

Define 1 or more models to aid in
your understanding of the system.
Document each model.

mI-16

Unit/Integration
Testing
Techniques

\W-)

Unit/Integration Testing Techniques

Branch Coverage

Choosing tests that will cover all possible
outcomes of each internal logical decision
(e.g., if-then-else)

bt i

T = current time

l{w
& No

—> 1<T+2 mintes —————-y)> Switch Light

No {1} l {l} Yes

AmoWaiggonLiw
Pedestrian Waiting on Light
Yes {l}l

» Process Signal

Coverage techniques assume a different
meaning for Expert Systems

04/21/92 Iv-2

-3

Unit/Integration Testing Techniques...

Path Coverage

Choosing tests that will cover all possible
combinations of outcomes of each internal
logical decision

North-South Light is Green

West-East Light is Red

T = current time

l{m}
No {13 3 No

———> 1 <T+2 minotes —————p> Switch Light

le {123

AmoWaggonUght
Pedestrian Waiting on Light
Yes {12 |

—p Process Signal

04/21/92 Iv-3

Unit/Integration Testing Techniques...

Condition Coverage

Choosing tests that will cover all possible
situations that could lead to an internal
logical decision choice

North-Soath Light is Green
West-East Light is Red

T = current time

J’m
8 N

— t<T»2 minstes —————) Switch Light

lYes 123

Ao Wakig ca Lig
Pedestrian Waiting oo Light
Yes (12} I

No {13

— Process Signal

04/21/92 V4

Unit/integration Testing Techniques...

InterProcedural Dataflow Testing

Focuses on coverage testing for areas
where units interact

. Look at Global data and Passed
Parameters

Involves Building a Definition/Use Table

. Identifies pairs of statements for each
variable based on definition and use

Can be complex to build without some
automated assistance

06/02/92 IV-5

Unit/integration Testing Techniques...

InterProcedural Dataflow Testing ...

Assume the following procedure for
handling the timing when traffic is waiting

1. Procedure Process_Signal(Switch_At) Is

2. Switch_At := Clock.Current+15

3. Time_Limit := Clock.Current+60

4. Begin

5. While Clock.Current < Switch_At Loop

6. If Approaching_Signal Then

7. If Clock.Current+15>Time_Limit
Then

8. Switch_At := Time_Limit;
Else

9. Switch_At := Clock.Current+15;

10. End If;

11. End If;

12. Clock.Tick;

13. End Process_Signal;

06/02/92 V-6

Unit/Integration Testing Techniques...

Step 1: Find interface and global variables

. Clock.Current, Clock.Tick query and
pulse the clock

- Approaching Signal senses
approaching traffic

. Switch At

Step 2: Build a Definition/Use table for
these items

Definition/Use Table for Process_Signal

Variable Definition | Use
Approaching_Signal 6
Clock.Tick 12
Clock.Current 2,3,5,7,9
Switch_At 2 5,8,9

Step 3: Select test cases that exercise
these statements

Ver:{waton B Valudeon

06/02/92 Iv-7

Unitintegration Testing Techniques...

Flavor Analysis

Attempts to find errors of omission

Documents:
. expected sequences of actions

. assertions about the effects of a
piece of code

Methods:

. Data Comments: documents
abstractions used in program
construction

« Operator Comments: documents a
legal "ordering” of operators

Goal: Compare actual execution against
expectations

06/02/92 Iv-8

/
Unit/Integration Testing Techniques...

Mutation Testing

"Seed"” a program with errors

Evaluates effectiveness of test cases

NorthrSouth Light is Green
West-East Light is Red

T = current time

=l

——> T2 minttes —————> Switch Light

—Pp Process Signal

06/02/92 IV-9

Unit/Integration Testing Techniques...

Reliability Testing

Identify structures that could adversely
affect system reliability if they fail

- Are not necessarily error-prone

For example, the system clock.

Prototype Evaluation

Test the user-interface pieces of the
system early

Involves either stubbing out some pieces
of the system or developing a simulation

For example: simulate signal hardware so
the traffic light software can be prototyped.

06/02/92 IV-10

Unit/Integration Testing Techniques...

Structural Testing

Goal: Comprehensive testing by executing
all parts of a knowledge base

Adaptable to cover any ES representation

Commercial tools available but are not
widely used (e.g., Expert/Measure)

Exercise: generate test cases for modular
- TLC solution that cover:

. each rule

~ « each path from update_time to
timer_expires

. an assertion and a retraction of at
least one instance of each fact
template

06/02/92 v-11

06/02/92

Exercises

Pick an implementation approach for
your problem. Based on this choice,
would you use:

- Coverage techniques
« Interprocedural data flow analysis

Provide rationale for your choices. If
you select more than one technique,
then prioritize them in order of
importance to your testing approach.

Identify "parts” of the system that
may impact reliability (HINT: you may
have to define what reliability is).
Define 1 or more test cases to test
those "parts”.

Document 1 or more expected
sequences of actions for your
problem.

IV-12

06/02/92

Exercises ...

Is prototype evaluation appropriate
for your problem? What about
mutation testing? Provide rationale.

Exchange your work with another
team. Study the problem. Ask
yourself the following:

. Does their implementation
approach match the problem?

» Are there any "holes™ or
inconsistencies in their descriptions?

. Did they pick the right techniques
for their implementation approach?

Iv-13

Static Testing

Y- |

Static Testing Techniques

Anomaly Analysis

. Involves looking at sequences of
events for certain types of
"anomalies”.

» Data flow anomalies such as "use-
set” and "set-set-use”

» Physical units mismatch such as
"length * volume”

- Examples:

» After a light change, the clock
counter is referenced before it is

reset

» There is an expression involving
"light color multiplied by time" which
doesn't make sense

4/30/92 V-2

Static Testing Techniques ...

Object-Oriented Analysis

. Object = set of data + associated
operations.

. The set of data has certain "legal”
values.

. Each operator accepts data with only
certain values.

. Analysis involves checking that no
combination of operators will result
in a data item getting an illegal value
or an operator being called with an
illegal input.

- Analysis will assure that the object
can never be put in an "illegal” state.

. Objects can be mapped to classes of
scenarios.

04/21/92 V-3

Static Testing Techniques ...

Object-Oriented Analysis ...
- Example:
» Time_counter is an object

» Time_counter should never be
negative

» Reset and decrement are operators
on time_counter

» Reset sets time to 120

» Decrement decreases time_counter
by 1 if time_counter is greater than
zero, otherwise it does-nothing to
time_counter

» Time_counter can be shown to be
guaranteed to always be non-
negative

4/30/92 V-4

Static Testing Techniques ...

Compilation Testing

- For some languages, such as Ada,
the compiler can detect some kinds
of errors in the architecture of

software |

Defect Analysis

. Involves identifying kinds of common
errors such as divide by zero

 Checking for instances of these
common errors

04/21/92 V-5

Static Testing Techniques ...

Axiomatic Analysis

<Pre-Condition>
... code fragment ...
<Post-Condition>

Given the pre-condition is TRUE

« Is post-condition TRUE after
execution of the code fragment

Given a combination of fragments

- Post-condition matches next pre-
condition

Can also be general conditions that apply
to the system as a whole

. E.g., "The traffic light can only be
green in one direction (NS or EW)"

. Not tied directly to a specific code
fragment

4/30/92 V-6

Static Testing Techniques ...

Stepwise Refinement

Separating a unit into equivalent
descriptions at varying levels of detail

Analyze by comparing each level of detail
to the preceeding one,

. Consistency/completeness checks

Symbolic Execution

Formal program proving technique

Traces program execution to prove
program properties

. Can help do axiomatic analysis
and/or stepwise refinement

Uses symbols act as placeholders for real
values (similar to classes)

4/30/92 V-7

Static Testing Techniques ...

Symbolic Execution ...

Consider the following procedure that
determines when to switch the light

Procedure Process_Signal

1 T|:=Tg¢+60;

2 Ts = Tc+15;

3 While T¢ < Tg Loop

4 -<*Te < Ts And Ts <= T| And Tc <T|*
5 If Approaching_Traffic Then
6 if Tc+15> T

7 Then Tg :=Tj;

8 Else Tg := Te+15;

9 End If;

10 End If;

11 —<*Tg<=T|And Tc < Tg *>
12 Tc = Tc +1

13 End Loop;

14 —<*Tec=TgAnd Tg<=T|*>

4/30/92

V-8

5/12/92 V-9

Static Testing Techniques ...

Symbolic Execution ...

Step 1: Define program properties to be
proved

. Lines 4, 11, and 14

Step 2: Build a graph of program flow
. Helpful to build smaller "sub” graphs

» Easier with pre/post conditions
« Framework for trace
Step 3: Trace program execution, proving
properties "as you go”
« See Handout #6

 Exercise: Fill in the missing parts of
the proof in Handout #6

Static Testing Techniques ...

Hazard Analysis
- Hazard: very undesirable situation

» e.g.,light is green in all directions
- Determine how hazards occur

» e.g.,hardware failure
 Verify system prevents occurrence

» e.g.,check hardware status before
switching the light

Fault Analysis
« Fault: a potential system error

» e.g.,failure of the clock
- Identify safety effects due to faults

» e.g.,lights never change

4/30/92 V-10

Static Testing Techniques ...

Software Fault Trees
Similar to Cause-Effect graphing
Maps faults to handlers

Maps failures to effects

‘\Coisionh
| Intersection

<

|____; i

Light fals to ‘Control Software Driver runs
turn green permits colision red fight

- t’% 1

Software tuns 5
‘both ights green

—————— —

And
~Cars present in % 1
:opposhsci'ections

05/01/92 V-11

Static Testing Techniques ...

Software Fault Trees ...

Helpful in defining when to stop testing

. "... test until the consequences of
failure no longer justify the testing

cost."48

Hazard and Fault analysis identify external
risks

Fault trees map those external risks to
specific modules

Based on external risks, assess (for each
module)

« Consequence of failure during
operation

- Expected number of failures (MTTF)

05/01/92 V-12

Static Testing Techniques ...

Rule Consistency Checking

Attempts to find errors by checking for
certain classes of "anomalies”.

. Anomaly = a type of relationship
between two or more rules that
"seems wrong” , e.d.,

A->Band C
B-> notC

. Anomalies generally indicate an error

Specific to rule-based lmplementatlon
(forward or backward)

Can find all "anomalies" but a human must
analyze anomaly to see if it is a problem.

Many research tools available, no
significant commercial offerings.

05/01/92 V-13

Static Testing Techniques ...

Rule Consistency Checking ...

Reachability anomalies (non-modular
version)

- Dead-end rules

» Del_old_changes does not affect any
other rule

» Fact "signal_changes" should have
been ''signal_change"

« Unreachable rules
» Del_old_changes is also unreachable
» No rule asserts "signal_changes"”

« Cycle Rules
» Update_time is in a cycle

» This "anomaly” does not indicate an
error in this case

» Why?

05/01/92 V-14

Static Testing Techniques ...

Rule Consistency Checking ...

Redundant Rules (modular version)

- Set_long_timer:

if light_changed or
signal.in_direction green
then
set long_timer
retract medium_timer
retract short_timer

« Retract_medium_timer:

if light_changed

then
retract medium_timer
retract short_timer

. An attempt to retract medium timer
twice if light_changed

05/01/92 V-15

Static Testing Techniques ...

Rule Consistency Checking ...

Conflicting rules (non-modular version)

« Set_long_timer:

if light_changed or
signal.in_direction green
then
set long_timer
set medium_timer
set short_timer

» Retract_medium_timer:

if light_changed

then
retract medium_timer
retract short_timer

« Two conflicting actions if
light_changed (set and retract timer)

05/01/92 V-16

Static Testing Techniques ...

Rule Consistency Checking ...

Dead-Fnd Rule {Rule C) | Unreachable Rule (Rule C)

05/01/92 V-17

Static Testing Techniques ...

Rule Consistency Checking ... (Graphing

Techniques)

Petri-Nets

- Originally used to "trace" dynamic
behavior of discrete event systems
(e.g., rule firings)

Similar to other diagramming
techniques (e.g., state diagrams,
cause-effect diagrams, etc.)

Network of propositions (e.g., rule
LHS and RHS)

"Tokens" trace rule firings

» Completeness and consistency
errors

Tedious without automated help

» Modularity helps reduce complexity

05/01/92 V-18

Static Testing Techniques ...

Rule Consistency Checking ...

Petri Nets ...
. Consider the TIME module of
Handout #4
Facts Rules
F1 (time (is ?t) R1 Count_Time
F2 (stop-time ?t) R2 Stopilt

05/01/92

V-19

Static Testing Techniques ...

Rule Consistency Checking ...

Directed Graphs (or Network Flows)

* Rules are converted into a collection
of directed arcs (directed because of

inference)

» First build a list of antecedent and
consequent propositions

- Generate an edge to the graph for
each antecedent/consequent pair

- Many algorithms exist for analyzing
reachability issues

05/01/92 V-20

Static Testing Techniques ...

Rule Consistency Checking ...

Connectivity Graphs
« Different kinds of matrices:

» facts vs. rules, clauses vs. rules,
clauses vs. facts, etc.

- Matrices can then be represented as
undirected graphs connecting
elements of the matrices

« Can Help to identify the major areas
of correctness

» e.g., for Rulebases: completeness ,
consistency, redundancy, dead-end
rules

« Can also assist in design (e.g.,
identifying modularity)

« Supported by simple matrix
operations (see Handout #5)

05/01/92 V-21

Static Testing Techniques ...

Data Consistency Checking

Checking that data use is consistent with
data definition

Checks data/facts

Can find mismatches between data
definition and use

Is supported by some tools (e.g., CRSV)

- E.g.,CRSV could detect "typos" such
as the fact "signal_changes"

05/01/92 V-22

Static Testing Techniques ...

Specification-Directed Analysis

Checking that implementation matches
specification

- Specification := assertion about a
part of the implementation, like a
"mini requirement”

Useful for all aspects of a knowledge base

Useful for finding any type of
implementation error

Not supported by any commercial tools but
research prototypes exist

05/01/92 V-23

Static Testing Techniques ...

Specification-Directed Analysis 2as

E.g., the "Timer"” module
- Assertion: timer names are unique
- Analysis of timer_name-conflict rule,
verifies assertion is true

Sometimes called "Formal Methods" (but
can be informal)

Examples of useful types of assertions

« Data value constraints
» E.g., timer constraint

« Postconditions for rules

» E.g., timer_name-conflict satisfies
postcondition “exactly one timer
called ?name will exist”

4/30/92 V-24

Static Testing Techniques ...

Specification-Directed Analysis ...

Some useful types of assertions ...

« Abstract functions

» E.g., light change action can be
abstractly described as

direction := { NS if direction = EW
EW if direction = NS }

« (precondition, postcondition) pairs

» e.g., for change-light function
pre: green-light' = NS or EW
post: green-light = NS or EW

and
green-light /= green-light’

4/30/92 V-25

Static Testing Techniques ...

Partition Analysis
Coverage techniques use implementation

Using a specification can help find missing
paths

- l.e., does the specification match the
code being tested

A more formal specification is needed

Step 1: Define the inputs for each path
along with the outputs

Step 2: Do the same for the associated
specification

Step 3: Generate intersections of the
results from steps 1 and 2

Step 4: For each non-empty intersection,
verify that the spec matches the path

06/02/92 V-26

06/02/92

Exercises

Identify and define at least 1 "object”
in your system (remember, objects
consist of both data and operations
on that data). |

Write a pre-condition and a post-
condition for each operation on the
object.

Describe any general properties your
"object” must satisfy. Discuss how
you would analyze your "object"s
implementation to "prove” those
properties are always satisfied.

Pick at least one operation and define
some rules that implement its
specification.

Vv-27

06/02/92

Exercises ...

Select one of the following
techniques for analyzing these rules.
Explain your answer.

e Petri Nets
« Directed Graphs
« Connectivity Matrices

Identify 1 "hazard” in your system.
Build a fault tree for for that "hazard".

Identify 1 "fault” in your system.
Build a fault tree for that "fault".

V-28

Summary

Vi-|

Techniques

There are many more techniques than the
ones discussed.

No technique by itself is sufficient for all
levels of software and all types of faults.

Choosing the right set of techniques is
important but can be difficult (the V&V
puzzle).

Techniques can be selected based on three
types of testing

1.Static Testing

2. Unit/Integration Testing

3.System Testing

06/22/92 VI-2 ==

Techniques ...

Each type of testing:

. Focuses on a different size of
software

Looks at different categories of
errors/faults

Uses certain techniques

» Can find errors more cheaply than a
later type of testing

[]

Can reduce the cost of later types of
testing by providing information (e.g.,
units, interfaces)

. Helps ensure a higher quality system

(e.g., the system doesn't "crash™ at
the beginning of the first system test)

06/22/92 VI-3

When to Stop Testing

Stop "when the money runs out" is a bad

approach

Better approach: define a testing objective
« Coverage (e.g., branch coverage)

- Reliability (e.g., Mean Time To
Failure)

- Number of errors found (e.g., 40% of
what was found at code inspection)

Test until objective(s) reached.

May prioritize objectives
« Most important objectives first
« Most critical modules first

« Most critical error types first

06/22/92 Vi-4

Appendix A:
References

A- |

References

1. Becker, S.A. and Medsker, L.. "The Application of
Cleanroom Software Engineering to the Development of
Expert Systems." Heuristics The Journal of Knowledge
Engineering. Quarterly Journal of the International
Association of Knowledge Engineers (IAKE). Volume 4
Number 3 pp. 31-40, Fall 1991.

2. Bellman, K.L., "The Modelling Issues Inherent in
Testing and Evaluating Knowledge-Based Systems".
Expert Systems with Applications. Vol 1., No. 3

3. Bezier, B.. Software Testing Techniques. Van
Nostrand Reinhold Company, Publisher, 1983.

4. Boehm, B.. "Industrial Software Metrics Top 10 List".
JIEEE Software. Volume 4 Number 5, pp. 84-85, September
1987.

5. Boeing Aerospace Company. Software Test
Handbook: Software Test Guidebook. Document No.
RADC-TR-84-53 Volume 2 of 2. Rome Air Development
Center, Griffis Air Force Base, NY 13441, March 1984.

6. Booch, G., Software Engineering with Ada.,
Benjamin/Cummings, 1983

Chapter 8 discusses type checking in Ada which
is a kind of data consistency checking technique.

4/30/92 A-2

References ...

7. Fagan, M.E.. "Design and Code Inspections to Reduce
Errors in Program Development." IBM Systems Journal
Volume 15 No. 3 pp. 182-211, 1976.

8. TFikes, R., Kehler, T., "The Role of Frame-Based
Representation in Reasoning", Communications of the
ACM., Sept., 1985

This is a general discussion of frames and their
use in rule-based programming. It includes some
discussion on necessary and sufficient conditions
for classifying a frame instance as belonging to a
certain class. This type of necessary and
sufficient condition checking ensures a level of

data consistency.

0. Franklin, W.R., Bansal, R., Gilbert, E., Shroff, G.,
"Debugging and Tracing Expert Systems". Proceedings of
the Twenty-first Annual Hawaii International Conference
on System Sciences. 1988

10. Goodenough, J.B. and Gerhart, S.L.. "Toward a
Theory of Test Data Selection". IEEE Transactions on
Software Engineering. pp. 156-173, June 1975.

11. Gries, D.. The Science of Programming. Springer-
Verlag New York, Inc. 1981.

4/30/92 A-3

References ...

12. Hantler, S.L. and King, J.C.. "An Introduction to
Proving the Correctness of Programs." ACM Computing
Reviews. pp.331-353, September 1976.

13. Harrold, M.J. and Soffa L.S.. "Selecting and Using
Data for Integration Testing." IEEE Software Volume 8
Number 2 pp. 58-65 March 1991.

14. Herod, J.M. and Bahill, T.. "Ameliorating the
Pregnant Man Problem: A Verification Tool for Personal
Computer Based Expert Systems". International Journal of

Man-Machine Studies. pp. 789-805, 1991.

15. Hoare, C.A.R. '"Introduction to Proving the
Correctness of Programs." ACM Computing Surveys pp.
331-353, September 1976.

16. Howden, W.E.. "Reliability of the Path Analysis
Testing Strategy." I[EEE Transactions on Software
Engineering pp. 208-215, September 1976.

17. Howden, W.E.. "Symbolic Testing and the DISSECT
Symbolic Evaluation System." IEEE Transactions on

Software Engineering pp. 266-278, July 1977.

4/30/92 A-4

References ...

18. Howden, W.E.. "Comments Analysis and
Programming Errors." IEEE Transactions on Software
Engineering Volume 16 Number 1 pp. 72-81, January
1990.

19. Howden, W.E.. "Weak Mutation Testing and
Completeness of Test Sets." IEEE Transactions on
Software Engineering Volume SE-8 No. 4, July 1982.

20. Jalote, P.. "Testing the Completeness of
Specifications." [EEE Transactions on Software
Engineering Volume 15 No. 5, May 1989.

21. Korson, T. and McGregor, J.D.. "Understanding
Object-oriented: A Unifying Paradigm." Communications
of the ACM Volume 33 No. 9 pp. 40-60 September 1990.

79, Landauer, C.A.. "Correctness Principles for Rule-
Based Expert Systems." Expert Systems with Applications.
Pergamon Press. Volume 1 Number 3 pp. 291-316, 1990.

23. Leite, J. and Freeman, P.. "Requirements Validation
Through ViewPoint Resolution." IEEE Transactions on
Software Engineering Volume 17 No. 2 pp. 1253-1269,

December 1991. |

4/30/92 A-5

24. Leveson, N.G.. "Safety." Aerospace Software
Engineering: A Collection of Concepts. Ed. Christine
Anderson and Merlin Dorfman. Volume 136 pp. 319-336,
American Institute of Aeronautics and Astronautics,

Publisher. 1991.

25. Leveson, N.G.. "Software Safety in Embedded
Computer Systems." Communications of the ACM Volume
34 No. 2, February 1991.

26. Leveson, N.G., Cha, S.S., and Shimeall, T.J.. "Safety
Verification of Ada Programs Using Software Fault Trees."

IEEE Software. pp. 48-59, July 1991.

27. Linger, R.C., Mills H.D. and Witt, E.L.. Structured
Programming: Theory and Practice. Addison-Wesley
Publishing Company 1979.

28. Liskov, B. and Guttag, J.. Abstraction and
Specification in Program Development. McGraw-Hill
Book Company 1986.

29. Liu, N.K. and Dillon, T.. "An Approach Toward the
Verification of Expert Systems Using Numerical Petri
Nets." International Journal of Intelligent Systems.
Volume 6, Number 3, pp. 255-276, June 1991.

4/30/92 A-6

References ...

30. Marcus, S., "SALT, A Knowledge Acquisition Tool
That Checks and Helps Test a Knowledge Base". AAAI
Workshop Notes on Verification, Validation, and Testing of
Knowledge-Based Systems. 1988.

31. McGraw, K.L., Harbison-Briggs, K.. Knowledge
Acquisition Principles and Guidelines. Prentice Hall, 1989

pp. 312-323 includes a discussion of using
experts to aid in review and testing of an expert
system

32. Meyer, B.. Object-oriented Software Construction.
Prentice Hall, Publisher 1988.

33. Miller, L.A., "Dynamic Testing of Knowledge Based
Systems Using the Heuristic Testing Approach". Expert
Systems with Applications. Vol. 1, No. 3, 1990

34. Mills, H.D., Linger, R.C. and Hevner, A.R.. "Box
Structured Information Systems." IBM Systems Journal
Volume 26 No. 4, 1987.

35. Mills, H.D., Linger, R.C. and Hevner, A.R..
Principles of Information Systems Analysis and Design.
Academic Press, Inc. 1986.

4/30/92 A-7

References ...

36. Montalbano, Decision Tables. Science Research
Associates, 1974

37. Myers, G.J.. The Art of Software Testing. John Wiley
& Sons, Publishing 1979.

38. Myers, G.J.. Software Reliability Principles and
Practices. John Wiley & Sons, Publishing 1976.

39. Myers, G.J.. Reliable Software Through Composite
Design. Mason/Charter Publishers 1975.

40. Myers, G.J.. Compositel/Structured Design. Litton
Educational Publishing 1978.

41. NASA/JISC Software Technology Branch, CLIPS
Reference Manual., Voll III, Section 2

Section 2 is the description of the capabilities of
CRSV .

42. Nazereth, D.L.. An Analysis of Techniques for
Verification of Logical Correctness in Rule-Based Systems.
pp. 80-136. Catalog Number 8811167-05150. UMI
Dissertation Service, Ann Arbor, MI 48106, 1988. (Phd.
dissertation, Case Western Reserve University, 1988)

4/30/92 A-8

References ...

43. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.,
"Knowledge Base Verification”, Al Magazine., Summer,
1987

44. Parnas, D.. "On the Criteria To Be Used in
Decomposing Systems into Modules." Communcaionts of
the ACM Volume 15 No. 12, pp. 1053-1058, December
1972.

45. Richardson, D.J. and Clarke, L.A.. "A Partition
Analysis Method to Increase Program Reliability."
Proceedings, Fifth International Conference on Software
Engineering pp. 244-253, 1981.

46. Rumbaugh, J.. Object-Oriented Modeling and Design.
Prentice-Hall, Inc. 1991.

47. Rushby, J., Crow, J., Evaluation of an Expert system
for Fault Detection, Isolation, and Recovery in the Manned
Maneuvering Unit. Final Report for NASA contract NAS1-
182226 (NASA/LANGLEY)

4/30/92 A-9

References ...

48. Rushby, J.. Quality Measures and Assurance for Al
Software. Prepared for NASA Langley Research Center.
NASA Contracter Report #4187, 1988.

This is the last reference in the references section
of this workshop. Pages 74-79 includes a
discussion of minimum competency testing.

49. Science Applications International Corporation. "Task
1: Review of Conventional Methods." Guidelines for
Verification and Validation of Expert Systems. Document
No. SAIC-91/6660, 1991.

50. Sherer, S.. "A Cost-Effective Approach. to Testing".
IEEE Software. pp. 34-40, March 1991.

51. Voas, J., Morell, L., and Miller, K.. "Predicting
Where Faults Can Hide from Testing". IEEE Software, pp.
41-48, March 1991.

52. Weld, D.S., de Kleer, J., eds. Qualitative Reasoning
about Physical Systems., Morgan Kaufmann, 1990

53. Yourdon, E. and Coad, P.. Object-Oriented Analysis.
Prentice Hall, Inc. Englewood Cliffs, NJ 1990.

4/30/92 A-10

Appendix B:
Techniques Vs.
References

Techniques Vs. References

Techniques References
Active Interface Testing 49
Anomaly Analysis 49,5
Attribute-Based Test Case 49
Selection
Axiomatic Analysis 11,20
Boundary Testing 37-40
Branch Coverage 37-40
Cause-Effect Graphing 37-40
Competing Designs 23
Compilation Testing 49
Condition Coverage 37-40
Connectivity Matrices 22, 42
Data Consistency Checking 6, 8, 41
Defect Analysis 49
Disaster Testing
Error Guessing 37-40

4/30/92

B-2

Techniques Vs. References ...

Techniques References
Explicit Modelling 2
Expert Review 31
Fault Analysis 24-26
Flavor Analysis 18
Flow Graphs ' 42
Hazard Analysis 24-26
Inspections 7,37
InterProcedural Dataflow Testing 12
Knowledge Acquisition 30, 14
Correctness
Minimum Competency Testing 47, 48
Mutation Testing 19
Object Oriented Analysis 53,37,21,44
Partition Analysis 45
Path Coverage 15, 37-40

4/30/92 B-3

Techniques Vs. References ...

Techniques References
Performance Testing 49,5
Petri Nets 1,29, 42
Pre/Post Condition Testing 11, 15, 27, 28
Prototyping
Random Testing ' 3,49
Realistic Testing 3,49
Regression Testing 3, 49
Reliability Testing 3,49
Rule Consistency Checking 42, 43
Sensitivity Analysis 9
Software Fault Trees 26
Specification-Directed Analysis Case Study #1, 47
State Diagrams ' 46
Stepwise Refinement 38-40, 34-35

4/30/92 B-4

Techniques Vs. References ...

Techniques References
Structural Testing 33
Stress Testing 3,37
Symbolic Execution ‘ 16,17, 12
Testability Analysis 50, 51

4/30/92 B-5

Workshop on
Verification and
Validation of Expert
Systems

Guidelines

Authors:

Scott W. French
FRENCHS@HOUVMSCC.VNETJBM.COM

David Hamilton
HAMILTON@HOUVMSCC.VNET.IBM.COM

IBM Corporation
3700 Bay Area Blvd.
Houston, TX 77058

%)
\F

N

&

Verification idation

Table of contents

L Introduction

I-2

Overview

IL Implications for Guidelimes

Overview -2
Conventional Validation Implications -4
Conventional Verification Implications -7
General Expert System V&YV Implications II-11
Expert System Validation Implications II-12
Expert System Verification Implications I-13
Other Implications a-14
1. Guidelines
Overview -2
Project Management Guidelines III-3
Problem Analysis Guidelines -6
Requirements Guidelines -8
Design Guidelines 1m-10
General Guidelines m-12
V&V Technique Guidelines I-13
Recommended Approach. mI-17
Discussion -23
Exercise 13-24

IV. Appendix A: References

04/20/92

Introduction

Overview

Goals

1. To understand guidelines on the
application of V&V techniques

2. To understand how to V&V a system
which includes expert system(s)

3. To understand how to tailor V&V based
on specific needs and characteristics

Approach

1. Make some inferences about what
should be in a set of expert system
V&YV guidelines

2. Discuss a set of V&V guidelines

3. Discuss tailoring of guidelines

04/20/92 I-2

Implications for
Guidelines

Pl

Overview

So far we have:

- Reviewed conventional and expert
system V&V techniques

« Pointed out key V&V ideas (e.g., the
V&V puzzle)

. Studied a sample problem (traffic
light controller)

04/20/92 -2

From this, we can make some inferences
about what should be in a set of ES V&V
standards and guidelines.

From these inferences, we can

- Develop a set of ES V&V guidelines

- Develop some tailoring criteria

Note: Many implications may seem trivial
but they lead to important guidelines.

04/20/92 -3

Conventional Validation Implications

Validation: "Am | building the right
product?”

« Must be able to know if a product is
right or not

 There must be some known criteria
that the right product will satisfy

04/20/92 o4

Conventional Validation Implications

Verification Puzzle: Different kinds of
correctness

. Must know which kinds of
correctness are important

» Utility Correctness at a minumum
(satisfies user's needs)

* Must know user's needs
- Should check that the understanding

of problem to be solved is both
complete and consistent

. May tailor V&V based on size,
complexity and criticality

. Must pick the V&V techniques to fit
the puzzle

04/20/92 -5

Conventional Validation

Implications ...

Black Box View: Based on observable
behavior

- Must be able to validate correctness
based on observable response from

known stimulus
» Can not validate system just by

seeing that correct knowledge went
into it

Operational Scenarios: Stimulus/response
descriptions based on how the system is

expected to be used

- User can describe how he expects to
use the system and developer can
obtain stimulus/response from the
user's description(s)

04/20/92 -6

Conventional Verification
Implications

Prototyping: Early model of possible
system

. Understanding of the desired system
can be validated before system
development begins

Verification Puzzle: Comprehensive
validation of large complex systems is too
difficult, but system can be "incrementally
validated” by performing separate, static,
unit/integration, and system testing

. Verification greatly reduces the
difficulty of validation

04/20/92 -7

Conventional Verification
Implications ...

Verification: "Am | building the system
right ?"

« Must know/understand the system
that is being built

« Must know how the system is to be
built (i.e., need design)

Modularity: Structured "divide and
conquer” approach has many benefits

- System should be modularized to
reduce the verification effort

04/20/92 -8

Conventional Verification
Implications ...

Different Techniques catch different types
of problems and none are comprehensive

. Mutliple V&V techniques must be
used

The earlier an error is found, the more
cheaply it can be fixed.

. Emphasize techniques which can be
applied early

. Perform verification as early as
practical

04/20/92 -9

04/20/92 II-10

Conventional Verification

_1

Implications ...

Techniques work at different levels (e.g.,
static analysis vs. statistical testing)

« Verification should be planned so
that techniques are applied when and
where they are appropriate

Static testing techniques work at many
different levels and can be applied early

- These techniques are important

Abstraction, refinement, and proper
documentation ease the application of
static testing techniques

- Design should use abstraction,
refinement, and associated
documentation (e.g., specifications)

General Expert System V&V
Implications

Expert systems are software

. Same basic conventional V&V
implications hold for expert systems

Expert Systems may satisfy some, but not
all, implementation and problem
characteristics

. Verification approach must be
tailored for the specific type of expert
system being built

04/20/92 o-11

Expert System Validation
Implications

May just mechanically apply expert's "rules
of thumb"” (as opposed to solving a
problem)

- Validation must rely on comparison
with the expert

May solve a very difficult problem (e.g.,
complex scheduling) where correct
solutions are not known

 Validation may be able to only
address "reasonableness” of
solutions (e.g., feasible schedule)

May solve a problem with only fuzzy or
subjectively correct answers

. Each test result must be checked by
an expert

04/20/92 o-12

Expert System Verification
Implications

Internal interactions may be unclear and/or
complex

- Manual analysis may be very difficult
(i.e., inspections)

Execution sequence may not be explicit

- Verification of problem solving
method may be very difficult

Expert Systems often built iteratively (in
small chunks)

. Testing should be iterative (to catch
errors early)

- Regression testing will be done often

04/20/92 o-13

Other (Common Sense) Implications

There is no way to know if the system will
meet the user's needs without doing
something that would be called V&V.

« V&V must be done

V&V takes time (and money)

« Development schedule and cost
should account for V&V

The best person to determine correctness
is the expert

« The expert should be involved in V&V

A "fresh look” can often find errors better

- Independent (unbiased) V&V should
be done if practical

04/20/92 -14

Guidelines

Wi~

Overview

The implications for V&V directly lead to
some specific guidelines which will be
discussed first.

Based on the guildelines,
recommendations for how to develop a
V&V approach will be discussed.

Finally, you will have the opportunity to
practice developing a V&V approachon a
case project.

04/20/92 m-2

Project Management Guidelines

Plan for V&V

. Include V&V in schedule (e.g.,
inspections)

. Include V&V cost in total
development cost (typical V&V cost is
25% of total project cost, spread
throughout the development cycle)

- Allocate resources for V&V (e.g.,
expert's time)

Plan to spend time developing a good
design (so static testing won't be too hard)

04/20/92 m-3

Project Management Guidelines ...

Pick a Life-cycle that includes all 3 test
phases (and follow it).

« Standardizing on a life-cycle aids in
planning and management of V&V.

Tailor V&V approach based on:
1.Expected size and complexity

2.Type of expert system (based on
characteristics)

3.Types of correctness that matter

04/20/92 m-4

Project Management Guidelines ...

Use Configuration Management
. Ensure system is correctly integrated

« Ensure testers know what they are
testing (e.g., version control)

. Helps manage the effects of complex
internal interactions

Reserve a significant portion of the
expert's time for helping with V&V (25%).

Prototype for early validation but clearly
separate prototyping from development

Plan to do V&V as the system is iteratively
developed (not all at the end).

04/20/92 m-5

Problem Analysis Guidelines

Try to narrow the problem domain as much
as possible

- "Knowledge based systems have a
greater likelihood of succeeding -
and, in a sense, of being valid - when
they address a narrowly defined

problem."8

- "If an expert system starts with vague
objectives, some may conclude that it
doesn't matter what the eventual
system does, because anything is

better than nothing."”7

04/20/92 II-6

Problem Analysis Guidelines ...

Do not try to pre-determine whether the
solution will be an "expert system” or not.

Expect .the System to work

. Survey results indicated a significant
percentage did not expect the Expert
System to be as accurate as the

expertd

. "The difficulty with low expectations
is that they become self-fulfilling"3

04/20/92 -7

Requirements Guidelines

Write Requirements.

- Something is needed to V&V the
system against.

» "A good programmer understands
what his program is supposed to do
and why he expects his program to

do it"3

Document the following (at a minimum):
« expected behavior

« operational scenarios (how the
system is expected to be used)

0412092 m-8

Requirements Guidelines ...

Consider each kind of correctness when
writing requirements. |

1. Functional

2. Safety

3. User-Interface

4. Resource Consumption

5. Utility

04/20/92 -9

Design Guidelines

Design modular systems

« Modules can be V&V'ed separately

- V&V of many little systems is easier
than V&V of one large system

- Reduces regression testing

Use abstraction and refinement
- Makes static testing easier

- Allows verification during design

Cross reference design to requirements
and code

- Facilitates completeness checking

04/20/92 Im-10

Design Guidelines ...

Some design hints

. Pick a design notation and stick with

it across the application (needed to
verify consistency).

. The Level of Formalism is NOT as
important as the consistency of
Formalism

» "1 will contend that conceptual
integrity is the most important
consideration in system design. It is
better to have a system ... reflect one
set of design ideas, than to have one
that contains many good but
independent and uncoordinated

ideas" - Fred Books6

04/20/92 oI-11

General Guidelines

Consider an independent group for final
V&V, or at least try to include some
independent reviews

« A "fresh look" often finds additional
errors

« Will help determine if system is
adequately documented

Always try to find as many errors as early
as possible

 Errors found early are much cheaper
to correct
Use a mixture of V&V techniques

- There is no single comprehensive
technique

04/20/92 m-12

V&V Technique Guidelines

During integration of large systems, test
higher level control and user-interface
functions first (stubbing out lower level

details if necessary)
Perform regression testing at each iteration
. Emphasize modules that changed

. Perform "health test” of overall
system

04/20/92 m-13

V&V Technique Guidelines ...

Emphasize static testing techniques for
evaluation of detailed functional
correctness

04/20/92

- Based on design notation/formalism,

write design specifications and
perform specification-directed
analysis

If rule-based implementation, perform
rule consistency checking

Use data-conslsténcy checking,
especially if implementation is frame-

based.

If developing a classification-type
expert system, perform sensitivity
analysis to evaluate sensitivity of

classes to distiguishing criteria

m-14

V&V Technique Guidelines ...

Use realistic testing for evaluating utility
and user-interface correctness

. Will the system satisfy the user needs
based on how they plan to (would like
to) use the system ?

Selectively choose test cases for testing
functional correctness (do not attempt to
be comprehensive, as in static testing)

. Emphasize critical and complex
functions

. Randomly exercise other functions

04/20/92 Im-15

V&V Technique Guidelines ...

Use stress/performance testing to evaluate
resource consumption correctness

After selective testing, measure coverage
and look for major "holes” in coverage
(rules not covered, facts not used etc).

04/20/92 mI-16

Recommended Approach

1.Analyze Problem (ongoing activity)

04/20/92

Identify areas of uncertainty and/or
complexity that may require

prototyping

Identify areas of high criticality

Identify available expertise

» |s problem to be solved by
knowledge acquisition or analysis ?

Identify/document expected behavior
and operational scenarios

Identify aspects of problem that
match expert system criteria, but do
not anticipate expert system
implementation.

m-17

Recommended Approach ...

2.Do initial planning

« Do not attempt comprehensive up-
front planning.

» True expert systems are usually
developed in a highly iterative
manner

Determine objectives for next
iteration.

Determine criticality of correctness.

Estimate size and cost (include V&V).

» If V&V is listed as separate cost, it is
in danger of being "cut”

Define milestones that follow a life-
cycle.

04/20/92 II-18

Recommended Approach ...

2.Do initial planning ...
- Reserve resources

» Expert's time
» Consider identifying IV&V group

» Look for available V&V tools
(especially those that assist an

expertd)
- Ensure:
» Problem is not too broadly defined

» Adequate requirements exist / will
exist

04/20/92 m-19

Recommended Approach ...

3.Perform design and specification-driven
analysis

- As each module is refined/completed,
verify functional correctness and
completeness.

- Always map back to higher level
design, requirement, prototype, or
problem description.

- Hold periodic inspections and involve
expert(s).

- Based on implementation approach,
use additional static testing
techniques (e.g., rule consistency
checking)

04/20/92 m-20

Recommended Approach ...

4.As each increment is completed

. Test overall execution (high level
control) e.g.,

» Screens/windows look OK
» Files opened/closed correctly

» Functions respond to appropriate
user inputs

» Output appears in the right place

04/20/92 ; m-21
o

Recommended Approach ...

4.As each increment is completed ...

« Perform realistic and/or statistical
testing

» Perform stress testing

« Measure coverage and look for
"holes”

» Regression test unchanged features

« Perform field testing with user's and
experts

04/20/92 m-22

06/22/92

Exercise

Determine whether the recommended
approach fits your problem. Identify
additional issues that need to be
considered.

Generate a detailed development plan
for your problem. Try to include
specific milestones and how they will
be achieved.

Define specific development
increments. Update your plan to reflect
those increments.

Consider the test cases you have
selected so far. Are there any other
kinds of testing you need to do? When
will you know to stop testing?

Build a high-level requirements outline
for your system definition. How well
does the original problem definition
map to your outline?

m-23

Appendix A:
References

V- |

1.

References

Parnas, D.L., Clements, P.C., "A Rational

Design Process: How and Why to Fake It", IEEE
Transactions on Software Engineering. Feb., 1986

2

Describes why one would wish to document a
product as if it were designed according to an
idealized development process/methodology,
even if was developed in a very ad-hoc manner.
Also includes suggestions on what the
documentation of a product should contain.

Fox, M.S., "Al and Expert System Myths,

Legends, and Facts", IEEE Expert. Feb., 1990

Contains personal observations by the author
that help expain some causes of ineffective Al
applications; many are due to a
misunderstanding of Al technology.

4/20/92 V-2

References ...

3. Guttag, J.V., "Why Programming is Too Hard
and What to Do About It", Research Directions in
Computer Science: An MIT Perspective, MIT Press,

1991

Contains personal observations by the author on
the difficulties in software programs. The author,
a respected professor and researcher in software
development techniques, offers some very
candid opinions in this paper.

4. Schank, R.C., "Where's the AL 7", Al Magazine,
Winter 1991

A very readable description of some personal
observations by the author on some difficulties
in developing truly intelligent systems. This
article is highly recommended reading.

4/20/92 V-3

5

References ...

"KBS V&YV - State of the Practice and

Implications for V&V Standards”

6.
Wes

This paper is included in the references section.
It summarizes a survey that was performed of 60
expert system projects to determine what
techniques were currently being used to V&V
expert systems and what difficulties were being
encountered.

Brooks, F., The Mythical Man Month, Addison-
ley, 1975

The classic book on software engineering. It is a
collection of personal observations on software
development. Although the book is many years
old, the observations are just as true today as
they were 15 years ago. This book is very highly
recommended reading.

4/20/92 V-4

References ...

7. Geissman, James R.. "Verification and
Validation for Expert Systems: A Practical
Methodology." Abacus Programming Corporation,
Van Nuys, CA., SOAR Conference, 1990 (777)

8. Marcot, Bruce. "Testing Your Knowledge
Base." Al Expert, July 1987

This article offers some practical advice for
testing knowledge bases by listing some very
general guidelines. It also has a good detailed list
of types of correctness.

9. Hall, A., "Seven Myths of Formal Methods",
IEEE Software, September, 1990

4/20/92 V-5

References ...

10. Bundy, Alan. "How to Improve the Reliability
of Expert Systems." Proceedings of Expert Systems
'87: Seventh Annual Technical Conference of the
Pontish Computer Society Specialist Group on
Expert Systems. December 1989, pp. 3-17.

11. Culbert, Chris. "Knowledge-Based Systems
Verification and Validation." The Verification and
Validation of Expert Systems Workshop. Austin, TX,
June 18, 1991.

12. Froscher, Judith N., Jacob, Robert J.K.. "A
Software Engineering Methodology for Rule-Based
Systems." IEEE Transactions on Knowledge
Engineering Volume 2. No. 2, pp. 173-189, June
1990.

13. The Institute of Electrical and Electronics
Engineers (IEEE). "IEEE Standard Glossary of
Software Engineering Terminology." ANSI/IEEE
Std. 729-1983. 345 E. 47th Street, New York, NY,
February 18, 1983.

4/20/92 V-6

14. Waterman, Donald A.. A Guide to Expert
Systems, Addison-Wesley Publishing Company,

1986, pg. 187.

4/20/92 VT

Case Study #1: A Solution
For The Traffic Controller

Problem Using Terms,
Operators and Productions

introduction

Case Study number one will provide a detailed example of designing an Expert
System solution to the Traffic Light Controller problem. The example is founded
on work done by IBM's Houston Scientific Center. This effort (with assistance
from Texas A&M University) combined th strengths of Production systems,
Term Subsumption Languages and Object-Oriented programming to define a
design language, called TOP (Terms, Operators and Productions), suitable for
building verifiable Expert Systems. For a more thorough discussion of these
different paradigms please refer to the References section of your class
notebook. A complete design for the Traffic Light Problem written using the TOP
design language is provided at the end of this study.

The design approach detailed in this case study represents an approach that
focuses on continually refining the problem definition as understanding of the
problem expands. Fortunately, as in conventional software design, this
approach can be neatly broken into steps. Verification and Validation
techniques, as appropriate, should be applied at each step. This discussion will
address appropriate Verification and Validation approaches at each step of the

development process.

Step 1: Knowledge-Base Architecture

To ease the verification effort, knowledge should be broken up into different
parts (i.e., modules). This analysis should focus on identifying the primary ideas
that describe the domain for a given system. In the case of the Traffic Light
problem, this can be done very easily. Be aware that the results of this step are
rarely final. As the problem becomes more clearly understood additional
changes to the architecture of the design will probably be needed.

TOP supports partitioning a knowledge base by allowing the designer to build
Ada-style packages. Each package defines the key ideas associated with a
given unit of knowledge. For example, from the Traffic Light problem, one could
easily identify several different units based on the key objects in the problem
description. These would be sensor, traffic_light and signal. Shown below is the
initial unit definition, using TOP syntax, for the sensor knowledge unit.

package SENSORS is

end SENSORS:

package body SENSORS is
end SENSORS:

Each unit will have a specification and a body. The specification will define the
interface to other units in the design. Each unit of knowledge should be loosley
coupled (i.e., it has few, if any, dependencies on other units) and strongly
cohesive (i.e., a given specificiation fully implements the knowledge).

Knowledge in one unit may be required to define another knowledge unit. For
example, the definition of the signal unit depends on the defintion of the sensor
unit. This is true because the indicators that define a signal are received from an
open sensor. To show these relationships in a TOP design, use the WITH (this
syntax is also derived from Ada) clause. For example, the signal unit
specification would appear as follows:

with SENSORS;
package body SIGNALS is

end SIGNALS;
Verification/Validation Approaches:

Verification approaches at this level are very dependant on how well the problem
is understood. This understanding must come from the expent in the field along
with a detailed requirements document that specifies the required behavior of
the expert system. Analysis using these two sources should focus on showing
that the units defined cover the problem space (i.e., nothing was left out) and
that the partitioning of the problem into units is consistent and maintainable.
Visualization techniques such as structure charts, semantic nets, etc. can be
“helpful in analysis of the architecture.

Step 2: Define the Knowledge Terms

The next step in developing an Expert system using TOP would be to completely
define each of the knowledge units. As mentioned, each knowledge unit in the
design captures a unique part of the overall knowledge. In TOP, these unique
parts are described using Terms. The technique for identifying these terms is
called conceptualization of the domain.

What are Terms? Terms capture declarative domain knowledge. In other
words, terms are the words used to describe things in the problem domain.
Terms can be either concepts (an idea) or relations (something that relates
concepts). A simple method of identifying the highest levels of these terms isto
look for nouns (i.e., concepts) and adjectives (i.e., relations). For example, from
the Traffic Light Problem, one could define a concept for each of the units
described previously such as signal, sensor, etc.. These particular concepts
represent the highest level idea to be captured by their respective knowledge

units. These are the easiest concepts to identify. Further understanding of the
problem reveals refinements to these high level concepts, such as
Open_Sensor, Received_Signal, etc.. Each of these refinements serve to clarify
the primary idea captured by the knowledge unit and therefore belong in the
same knowledge unit as the highest level concept. Relations are also identified
based on an understanding of the problem. For example, from the Traffic Light
problem, the relation Has_Approaching would serve to relate the concepts of a
Signal and an Indicator (a special kind of number).

In TOP, refinement of high-level concepts and relations is captured by (1) the
specializes keyword and (2) the ability to specify what makes one term a
specialization of another. For example, the idea of an Received_Signal is the
same as that of a Signal except that the Has_Approaching and Has Waiting
indicators are associated with a Received_Signal (the reverse is not true). There
may be cases where no definition is possible or desired. These terms are

considered primitive.
Verification/Validation Approach:

Conveniently, concepts and relations can be thought of as sets or c/asses of
things. The members of these sets are called instances. The definition
associated with a given concept or relation describes when something can be
classified as belonging to that given concept or relation. Clearly, if there are sets
then there are subsets. The specializes keyword serves to identify those terms
that are subsets. For example, instances of the concept Received_Signal are
also instances of Signal, but not necessarily the other way around. Only when
the instances satisfy the Recsived_Signal definition would they be classified as
both a Signal and a Received_Signal.

The advantage of viewing concepts and relations as sets is that there are lots of -
good analysis techniques based on set theory. One simple technique to assist in
analyzing the concepts in a given unit is the Venn Diagram. Each knowledge

unit should capture one major set with all terms defined in that unit being subsets
of that one primary set. For example, from the Traffic Light Problem, all terms in
the unit, Signals, belong to one major set called Signal. If a term in the unit does
not fit quite right into the main set then it should be partitioned into its own

knowledge unit.

S = {Set of all signals}

R={Set of all received

AO = {Set of all received signals that indicate only appraoching traffic}
WO = {Set of all received signals that indicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signals}

The Venn Diagram should help in defining good concepts and relations and help
in finding those things that do not make good sets, but rather define some global
constraint that the system should operate under. As the Venn Diagram is
defined, there will be some parts of the unit definition that are not conveniently
described as sets. These parts describe more general constraints or conditions
on the knowledge. Typically they involve more than one term. TOP designs
include the definition of Global Constraints for the purpose of capturing these
important parts of the knowledge. These parts are best left out of the Venn
Diagram since they are constraints and not sets. However, the Venn Diagram
can help in analyzing the conditions that define each global constraint. Some
examples of these will be shown later as we expand the scope of the solution to
the Traffic Light Problem.

Verifying the terms is the simplest part of venfying the ES because of their
declarative nature. Just like the first step in this process, showing that the
definitions are correct depends on the requirements and inputs from the expert.
Many of the more difficult aspects of the ES design, such as sequencing, are not
an issue at this early step. However, declarative definitions can become quite
complex (i.e., they involve many conditions). To make the verification process
easier, it is helpful to capture small groupings of conditions into a higher level
condition (i.e., stepwise refinement/abstraction).

For example, from the Traffic Light Problem, an Approaching Only_Signal is a
Received_But_Not_Processed_Signal that indicates that a given signal indicates
that approaching traffic was detected while no traffic was waiting. By capturing
this detailed set of conditions as a concept, a name (or abstraction) can be
associated with those conditions. This means that other portions of the design
can check an instance's membership in the set Approaching_Only_Signal, rather
the specific conditions.

Step 3. Defining Tasks for Knowledge Units

After steps one and two the declarative part of the domain knowledge is
complete. Each knowiedge unit captures a collection of terms that define a
piece of domain knowledge. However, nothing has been defined to transition
instances of a given term (or set) to instances of another set. Therefore, the
next simplest step in our design process will be to identify tasks (e.g. object-
oriented programming refers to these as operators) that perform these
transitions. These tasks relate very nicely to the verbs in the problem
description. For example, the unit, Traffic_Light, contains a task (or operator)
called Switch that changes the light.

TOP uses the Method construct to aliow designers to define the different tasks in
a given knowledge unit. TOP does not declare a task (or operator) explicitly, but
rather defines it as a collection of its methods. A given task may have many
different methods based on different situations under which they might be used.
For example, the method, Switch, from the Traffic_Light knowledge unit
performs a different function based on whether the light is currently red or the
light is currently green. These differing situations are specified using the Used
When clause of the Method.

Methods also contain pre and post conditions. Pre-conditions are specified
using the Requires clause and the post-conditions are specified using the To
Produce clause. For example, the method Open from the unit, Sensors,
requires that a given sensor is not already open. A post-condition specifies the
conditions that must be true when the expressions contained in the /nvolves
portion of the Method have finished execution. For example, when the method
Open finishes execution, the given sensor should be now classified as an
Open_Sensor. In fact, it is very straightforward to show that the post-condition

for this method will aiways be satisfied, because the method asserts that the
given sensor is now an Open_Sensor.

It is important to recognize the difference between the situation conditions and
the pre-conditons. Pre-conditions express a collection of binding conditions that
must be true for all methods of a given task. Situation conditions, however,
specify a disjoint collection of conditions used to determine which particular
method is selected for execution.

Verification and Validation Approach:

Verification and Validation at this step in the design focuses on showing that the
correct tasks have been identified and that each method of a given task is
correct. Verifying that the correct tasks have been identified is fairly
straightforward. Once again, input from the requirements and an expert are
important is showing the correct tasks have been identified. Another technigque
involves using the Venn Diagram approach outlined above. Since all concepts
of the unit are being viewed as sets one can analyze the identifed tasks to see
that these tasks perform all possible transitions (i.e., an instance of one kind of
set can always be transitioned to another kind of set). For example, in the Venn
Diagram that follows, the task Sense is shown to transition any instance of the
set Signal to its subset, Received_Signal. This does give the complete coverage
argument required. How does an instance of Received_Signal become an
instance of Approaching_Only_Signal? This one can be answered directly from
the definition of the concept, Approaching_Only_Signal. How can an instance of
Received_Signal become a Received_But_Not_Processed_Signal? That
happens as a direct result of the task, Sense. How does an instance of
Received_Signal become an instance of Received_And_Processed_Signal?
Apparently, given the definition of the Signals unit there is nothing defined to
perform that mapping. Is this a problem? In some cases this might identify
something that has been left out of the design. In this case, maybe not. The
intention is to allow what ever unit that is processing the Received_Signal to
indicate when it has finished processing that signal (hence the concept,
Received_And_Processed_Signal is primitive). Therefore, no problem exists.
The diagram shown does not indicate how the opposite transitions can be made
(e.g., how does an instance of Received_Signal become an instance of just
Signal?). Take a few moments and figure out how to modify the diagram, based
on the TOP design, to reflect the missing parts.

Having shown that the correct tasks were identified, each task must be shown to
be correct. This is a three part process: verifying the situations, verifying the
pre-conditions and verifying the post-conditions. Verifying the situation
expression involves showing that the combination of all situation expressions
(i.e., each situation for each particular method of a task) covers all possible
conditions under which the task operates. For example, coverage exists for the
Switch task in the Traffic_Light unit, because a method is defined for each

possible state of the light (i.e., red or green). The arguement is easily shown to
be true because an instance of a light can only be a red-light or a green-light.

Verification of pre-conditions involves showing that the Requires condition is a
necessary condition for all methods of a task. Verifying the post-condition
involves showing that the result of executing the involves portion of the method
will produce the expected results. Showing that both the pre and post conditions
are correct depends a lot on input from the requirements and experts.

S = {Set of all signals}

R={Set of all received signals}

AQ = {Set of all received signals that indicate only appraoching traffic}
WO = {Set of all received signals that in;iicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signals}

Step 4. Specifying Problem Solving Behavior/Tasks

Now that steps one through three have been completed, the basic building
blocks exist for defining the problem solving behavior of the Expert System. To
define this behavior it is beneficial to try and identify the problem solving

behavior by abstracting the specifics of what the system does to a general
approach. For example, using the Traffic Light Problem definition, an abstracted
problem solving approach might be as follows.

A goal exists that some activity should be performed (in this case, the light
should change). In order for this activity to be performed, however, a specific
event must take place (in this case, a period of time must expire). A subgoal,
then, is to watch for this specific event to take place. This subgoal depends on
_other events (in this case, defining the desired interval of time to wait). Another
subgoal, then, is to watch for completion of these events.

Let's refine this description to be more specific for the Traffic Light Problem. The
desire is for the traffic light to change. What is required for this to happen? A
period of time must expire in order for the light to change. How does a period of
time expire? Clearly a period of timer expires when that exact number of time
units has passed. But, what period of time should expire? There are many
different circumstances under which a period of time is selected for expiration.
These different circumstances map directly to the specific scenarios (i.e.,
stimulus histories) discussed at the black-box view of the problem.

At this point, something interesting happens that was alluded to in step one. At
this point the Traffic Light Problem design has focused on three main units:
Sensors, Signals and Traffic_Light. However, refinement of the problem has
introduced a new unit that was not so apparent when the architecture was
initially defined. This unit, Timer_Unit, focuses on defining the measurement of
time periods to support the goal of periodically changing the traffic light. Should
this happen during design (and it usually will), the appropriate step is to re-work
steps one through three by adding in the new design unit. Venn Diagrams
describing Timer_Unit are shown next.

T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers} .
S' = {Set of all unexpired short timers}
M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}

10

T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}
M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}

Having modified the design to accomodate the Timer_Unit, the domain
knowledge is complete and sufficient for capturing the problem solving behavior.
TOPcaptures each part of the problem solving behavior as a Production. Each
production has a name that describes the intended action this production will
perform, a condition that must be satisfied in order for the desired action to be
taken, a body that performs the action by invoking tasks and a post-condition
that describes the expected result of performing the actions in the production
body. Given this description let's examine who our description of the problem
solving behavior for the Traffic Light Problem maps to the solution shown at the
back of this study. The unit, Traffic_System, contains the highest level
productions that exhibit the problem solving behavior described.

11

At the highest level of the behavior description is the goal to change the light.
The production, Change_The_Light, performs this action. As specified in the /f
condition of the production, achieving this goal depends on the required period
of time expiring; which, of course, matches the probiem solving behavior defined
above. Next, let's exaniine tfi& subgoal of causing a period of time to expire.
Well, the declarative knowledge explicitly states what causes a period of time to
expire, but how is that state achieved? Clearly, this state is achieved by
reducing the number of seconds until expiration to zero. The production,
Tick_The_Running_Timer, performs this action.

Let's examine our next subgoal and that is selecting a period of time to expire.
The global constraints shown in the unit, Traffic_System, capture the conditions
that guide selection of the appropriate timer based on the requirements (note
that these capture conditions involving more than one term). For example, the
global constraint, Timer_Should_Switch, will flag when a 15 or 60 second
interval should be used instead of the longer 120 second interval. Using these
abstratct conditions, the productions, ReStart_The_Running_Timer and
Switch_Timer perform the action of selecting the required interval of time to

expire.

Now that the problem solving method has been defined, the specific actions
each production will take must be defined. Typically, this will involve a stepwise
refinement activity involving specification of more abstract tasks that invoke less
abstract tasks. For example, the task, Switch_Light in unit Traffic_System
invokes the task Switch from unit Traffic_Light to change the light and the tasks
Start and Stop from the unit Timer_Unit to set a new expiration time for the next
change of the light. The other tasks in Traffic_System also reflect this process of

stepwise refinement.
Verification and Validation

Verifying this final step in the process is the most difficult part of the process.
The first step is to show that all necessary productions have been defined to
achieve the problem solving behavior. It is also necessary to show that the
sequencing of these activities is correct. The discussion outlined above is an
informal way to describe the problem so that sequencing can be verified.
Another way is to use a state-sequence expression. A state-sequence
expression explicitly dictates the expected order of invoking productions. A
simple expression for the Traffic_System unit might be as follows:

{ [Tick_The_Running_Timer |
ReStart_The_Running_Timer |
Switch_Timer] -> Tick_The_Running_Timer -> Change_The_Light}

This expression simply states that Tick_The_Running_Timer,
ReStart_The_Running_Timer and Switch_Timer can be fired in a non-

12

deterministic fashion, but Tick_The_Running_Timer must always precede firing
the Change_The_Light production.

Next, all pre and post conditions must be verified as correct. This is a very
detailed process of mapping conditions in the productions to the composition of
conditions from the invoked tasks. For example, the If condition of the
production, Change_The_Light, must match the Requires condition for the
Switch_Light task. In addition, the result of executing Switch_Light must
produce a result that is compatible with the post-condition, if any, of
Change_The_Light. Fortunately, this is easy when post-conditions have been
specified. For this case, simply match the To Produce clause of the
Switch_Light task and the To Produce clause of the Change_The_Light

production.

Next, any tasks invoked by higher level tasks need to have their pre and post
conditions matched against the conditions in the invoking task. For example, in
the task, Switch_Light, it follows that the task Stop can be invoked for the timer
that just expired because an Expired_Timeris considered a Running_Timer and
the passed timer must be a Running_Timer for Stop to be used. This process is
repeated until all tasks are shown to produce the correct results with respect to

the productions that invoked them.

13

Specifications

Package Sensors Is

*

llllltll}\

State Data

A sensor is an item that contains (or sends) signals. Other
objects "read” the sensor to access new signals. A sensor
can be “read"” only after it has been "opened.”

Concept Sensor Is Primitive;
Concept Open_Sensor Specializes Sensor And Is Primitive;

Constraints

- NA

initialization

Traffic_Sensor Is_A Sensor;

— End State Data

_.'>

»

-~

— Transitions

— Problem Solving Method

- Whenever a signal has not been received and sensor is
~ "open" then the sensor should be “read" for new signal
- values

Production Open_Sensors Is
if
S Is_A Sensor And
NOT S Is_A Open_Sensor
Then
Perform Open(S)
End Production;

-<

-- Method Open(S: In Out Sensor)
- will open a sensor for processing
-~ End Open;

;lethod Open(Sn: Sensor);

--‘)

14

- End Transitions

End Sensors;

With Sensors;
Package Signals Is

-

- State Data
- Model

— The signals package captures the notion of a signal. A

— signal (represented by a 0 or 1) is used to notify the

— traffic controller that some extemal event has happened.

-- A signal is considered to be "received” when a new indicator
— is received from the sensor. A signal is considered to

— be "triggered” when the sensed valueis a 1 froma "received”

- signal.
Concept Signal Is Primitive;
Concept Indicator Specializes Number And Is Primitive;
Concept On_lIndicator Specializes Indicator And Is Defined By

An indicator is ON when its value is 1
}
i Such That i Is_A Indicator And i =1

End Concept;
Concept Off_Indicator Specializes Indicator And Is Defined By

An indicator is OFF when its value is 0
}
i Such That i Is_A Indicator And i = 0

End Concept; :

Relation Has_Approaching(S: Signal; |: Indicator) Is Primitive;
Relation Has_Waiting(S: Signal; |: indicator) Is Primitive;

Concept Received_Signal Specializes Signal And Is Defined By

A Received_But_Not_Processed_Signal is a Signal
that Has_lIndicator ! that has just been received from a
Sensor.

}
r Such That r Is_A Signal And
r Has_Approaching i1 And
r Has_Waiting i2
End Concept;
Concept Received_And_Processed_Signal Specializes
Received_Signal And Is Primitive;

15

Concept Received_But_Not_Processed_Signal Specializes
Received_Signal And Is Defined By
-

It a received signal has not been processed then it is
a “received_but_not_processed"” signal

}

t Such That t Is_A Received_Signal And

NOTtis_A Received_aAnd_Prooessed_Signal

End Concept;

Concept Waiting_Only_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

S Is_A Waiting_Only_Signal when only the
Waiting_Signal is triggered

}
s Such That
s Is_A Received_But_Not_Processed_Signal
s Has_Approaching i1 And
i1 Is_A Off_indicator And
s Has_Waiting i2 And
i2 Is_A On_Indicator
End Concept;
Concept Waiting_And_Approaching_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

{
S Is_A Waiting_And_Approaching_Signal when
both the Waiting_Signal and
Approaching_Signal is triggered

}
s Such That
s Is_A Received_But_Not_Processed_Signal
And
s Has_Approaching i1 And
i1 Is_A On_Indicator And
s Has_Waiting i2 And
2 Is_A On_lindicator
End Concept; '

Concept Approaching_Only_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

S Is_A Approaching_Only_Signal when only the
Approaching_Signal is triggered

}

s Such That
s is_A Received_But_Not_Processed_Signal

And
s Has_Approaching i1 And
i1 Is_A On_lIndicator And
s Has_Waiting i2 And
i2 Is_A Off_Indicator
End Concept;

16

Concept No_Waiting_Or_Approaching_Signal Specializes

Received_But_Not_Processed_Signal And Is Defined By

S Is_A Approaching_Only_Signal when only the
Approaching_Signal is triggered

}
s Such That

s Is_A Received_But_Not_Processed_Signal
And
s Has_Approaching i1 And
i1 Is_A Off_Indicator And
s Has_Waiting i2 And
i2 Is_A Off_indicator

End Concept;

- Constraints

- N/A

-~ [nitialization

Traffic_Signal : Signal,

— End State Data

..'>

L 4

-.<
- Transitions

..<'

—~ Whenever a signal has not been received and sensor is

— "open” then the sensor should be “read" for new signal
— values

Production Get_New_Signals Is
If
Traffic_Sensor: Open_Sensor And
NOT Traffic_Signal: Received_Signal
Then
Perform Sense(Traffic_Signal, Traffic_Sensor)
End Production;
—'>

—<

-~ Method Sense(s: in signal)

— will retrieve a new indicator from the sensor
-~ End Sense;

Method Sense(s: Signal; sn: Sensor);
—..>
..<'

Method Reset(s: in received_signal)
will indicate that the received_signal, s, has been
processed and cannot be processed again until a
new indicator has been received

17

-~ End Reset;
Method Reset(s: Signal);

—'>
— End Transitions
—'>

End Signals;

With Signals;
Package Timer_Unit Is

—
— State Data

-~ Model

- A Timer is an item that serves to mark the elapse of a given
- period of time. A Timer is considered to by “set” when a

— given period of time is associated with that timer. A "set”
— timer is "expired” when that given period of time expires

- (i.e.is0)

Concept Timer Is Primitive;

Concept Tick Specializes Number And Is Primitive;

Relation Expires_In(T: Timer; CT: Tick) I8 Primitive;

Relation Has_Expiration_Value(T: Timer; CT: Tick) s
Primitive;

Relation Has_Secondary(P: Timer; S: Timer) Is Primitive;

Relation Is_Secondary_To(S: Timer; P: Timer)
is Defined By

{
P Is_Secondary_To S when S Has_Secondary P
} ‘ ;
(s, p) Such That p Is_A Timer And s Is_A Timer And
p Has_Secondary s
End Relation; : '

Relation Switches_To(P: Timer; S: Timer) Is Primitive;
Concept Running_Timer Specializes Timer And Is Primitive;

Concept Long_Timer Specializes Timer And Is Defined By
{
The Long_Timer expires in 120 seconds
}
t Such That t Is_A Timer And

t Has_expiration_value ev And ev = 120
End Concept;

Concept Medium_Timer Specializes Timer And Is Defined By

18

{
The Medium_Timer expires in 60 seconds

}
t Such That t Is_A Timer And
t Has_Expiration_Value ev And ev = 60

End Concept;

Concept Short_Timer Specializes Timer And Is Defined By

The Short_Timer expires in 15 seconds

}
t Such That t Is_A Timer And
t Has_Expiration_Value ev Andev=15

End Concept;

Concept Expired_Timer Specializes Running_Timer And
Is Defined By

Only an "running" timer can expire. Expiration occurs
when the seconds remaining before expiration is 0.

}
t Such That t Is_A Running_Timer And
t Expires_inw And w=0
End Concept;

Concept UnExpired_Short_Running_Timer Specializes
Running_Timer And Is Defined By

A short timer that is running but has not expired

}
t Such That t Is_A Running_Timer And
t Is_A Short_Timer And
NOT t Is_A Expired_Timer
End Concept;

Concept UnExpired_Long_Running_Timer Specializes
Running_Timer And Is Defined By
A long timer that is running but has not expired

}
t Such That t Is_A Running_Timer And
t Is_A Long_Timer And
NOT t Is_A Expired_Timer
End Concept;

-- Constraints

Global Constraint
T|mer_To_Use_When_None_Are_Running
Specializes Timer And Is Defined By

Use the long timer when no other timers are running
}
t Such That t Is_A Long_Timer And

NOT t Is_A Running_Timer And
(s Is_A Short_Timer And

19

NOT s Is_A Running_Timer) And
(m Is_A Medium_Timer And
‘ NOT m is_A Running_Timer)
End Global Constraint;

Initialization
M Is_A Timer
That Has_Expiration_Value €0;

Sis_A Timer
That Has_Expiration_Value 15 And
Has_Secondary M;

L Is_A Timer
That Has_Expiration_Value 120 And
Switches_To S;

End State Data

..'>

»

—<

Transitions

-—<
- Whenever all timers are not running, start the timer the
- primary timer (in this case, the long timer)

Production Initial_Timer_Start Is
If
t: Timer_To_Use_When_None_Are_Running
Then . ’
Perform Start(t)
End Production;
-—'>

-

—<

- Method Stop(t: Timer) is
-~ Stop a running timer
-~ End Stop;

—Method Stop(t: Timer);

->

»

.-<

- Method Start(t: Timer) Is

- Start a timer that is not running
- End Start;

Method Start(t: Timer);

..'>

End Transitions

_'>

End Timer_Unit;

With Timer_Unit;
Package Traffic_Light Is

*

}
A

:

Model

A “light" is an item that controls the flow of traffic in
a given direction. The control of traffic fiow is achieved
through the use of colors (red and green).

Concept Light Is Primitive;
Concept Red_Light Specializes Light And Is Primitive;
Concept Green_Light Specializes Light And Is Primitive;

-~ Constraints
- N/A

— Initialization
NS_Light : Red_Light;

- End State Data

- Transitions

- Method Switch(l: light)
- will switch the color of the light in a given direction
- End Switch;

Method Switch(l: Light);

—.>
- End Transitions

_'>

End Traffic_Light;

With Traffic_Light;
With Timer_Unit;
Package Traffic_System Is

»

-.<
-~ State Data

21

Model

Timers fall into certain "categories” based on the traffic
conditions. Timer_Should_Tick, Timer_Should_Switch and
Timer_Should_Be_ReStarted define the possible categories
for a timer based on traffic conditions.

Constraints
Global Constraint Timer_Should_Tick(t: Timer; s: Signal)

Is Defined By

{
A Timer_Should_Tick when the no approaching or waiting
traffic is detected

}
t Such That t Is_A Running_Timer And

NOT t Is_A Expired_Timer And
s Is_A No_Waiting_Or_Approaching_Signal
End Global Constraint;

Global Constraint Timer_Should_Switch(t: Timer; s: Signal)
Is Defined By

{
A Timer_Should_Switch when the long timer is running
and a waiting signal is received.
}
t Such That t Is_A UnExpired_Long_Running_Timer And
(s Is_A Waiting_Only_Signal Or
s Is_A Watting_And_Approaching_Signal)
End Global Constraint;

Global Constraint Timer_Should_Be_Restarted(t: Timer;

s: Signal)
is Defined By

{

A Timer_Should_Be_ReStarted when the running timer
has not expired and the current sngnal indicates
approaching traffic. When the running timer is a long timer
a waiting signal will take precedence over the approaching
signal.

} ‘
t Such That (t Is_A UnExpired_Short_Running_Timer And
(s Is_A Approaching_Only_Signal Or
s Is_A Waiting_And_Approaching_Signal))
Or
(t Is_A UnExpired_Long_Running_Timer And
s Is_A Approaching_Only_Signal)
End Global Constraint;

Globat Constraint Long_Timer_Expired_At(t: Timer; s: Signal)
Is Defined By

{
A Long_Timer_Expired_At when the running timer is
long and it has expired and a new signal has been
received but not processed.

}
t Such Thatt is_A Long_Timer And
‘ t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
End Global Constraint;

Global Constraint Medium_Timer_Expired_At(t: Timer;
s: Signal)
Is Defined By -

{
A Medium_Timer_Expired_At when the running timer is
medium and it has expired and a new signal has been
received but not processed.

}
t Such That t Is_A Medium_Timer And
t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
End Global Constraint;

Global Constraint Short_Timer_Expired_At(t: Timer; s: Signal)
Is Defined By

{
A Short_Timer_Expired_At when the running timer is
short and it has expired and a new signal has been
received but not processed.

}
t Such Thatt Is_A Short_Timer And
t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
End Global Constraint;

— Initialization
NS_Light : Red_Light;

- End State Data
—'>

-<'

~ Transitions

—<

— Whenever the long timer is running and waiting traffic is
- detected then switch to running the short and medium
- timers

Production Switch_Timer Is
it
Timer t Should_Switch Because of s And
slis_A Received_But_Not_Processed_Signal
Then
Perform Switch_Timer(t)
Perform Reset(s)
End Production;
—.>

»

-<<

23

— Whenever no approaching or waiting traffic is detected
— the currently running timer should be pulsed

Production Tick_The_Running_Timer Is
if
Timer t Should_Tick Because of s And
s Is_A Received_But_Not_Processed_Signal
Then
Perform Do_Tick(t)
Perform Reset(s)
End Production;
—'>

*

—
- Whenever the long timer is running and approaching

- traffic (only) is detected or the short/medium timers are
running and approaching traffic is detected (irregardless
of waiting traffic) the running timer should be restarted

Production ReStart_The_Running_Timer Is
If
Timer t Should_Be_Restarted Because of s Ard
s Is_A Received_But_Not_Processed_Signal
Then
Perform Re_Start(t)
Perform Reset(s)
End Production;
—'>

-
-~ Whenever a running timer expires, the light shouid change
—~ and all timers are stopped

Production Change_The_Light Is
it
t Is_A Expired_Timer
Then
Perform Switch_Light(NS_Light
End Production; :
...>

>

-< .

— Method Do_Tick(t: Timer) Is

- Decrements the number of seconds until a timer

—~ expires. Inthe case where a timer has a secondary

- timer (i.e., one that runs at the same time), both timers
- are decremented.

- End Do_Tick;

Method Do_Tick(t: Timer);
S

*

-<
- Method Re_Start(t: Timer) Is
- Stops and Starts the timer at its maximum expiration

-~ time.
- End Re_Start;

Method Re_Start(t: Timer);
-_'>

_<’

- Method Switch_Timer(t: Timer) Is

- Stops the currently running timer and tumns on the
— short/medium timers to measure when light should
-~ change

- End Swich_Timer;

Method Switch_Timer(t: Timer);
...>

_<'

— Method Switch_Light(t: Timer) Is
~ Changes the color of the light and stops running timer(s).
— End Switch_Light;

Method Switch_Light(l: Light);

_'>

- End Transitions
--.>

End Traffic_System;

Bodies

Package Body Sensors Is

-~<
-~ Transitions

..<'

-- Method Open(S: In Out Sensor)
- will open a sensor for processing
- End Open;

Method Open(Sn: Sensor) Is
Requires Sn Is_A Sensor And
NOT Sn Is_A Open_Sensor
involves Open physical file
Assert Sn Is_A Open_Sensor
To Produce Sn Is_A Open_Sensor
End Method;

_'>

- End Transitions

--'>

End Sensors;

Package Body Signals Is

-

-—<
~ Transitions

4

-<

— Method Sense(s: in signal)

~ will retrieve a new indicator from the sensor

-~ End Sense;

Method Sense(s: Signal; sn: Sensor) Is
Requires s is_A Signal And
sn Is_A Open_Sensor
NOT s Is_A Received_Signal
involves i = indicator from Sensor

If sensor finished transmitting Then

halt
End If
Assert i Is_A Indicator
Assert s Has_Approaching i
i = next Indicator from Sensor

If Sensor finished transmitting Then

halt

End If
Assert i Is_A Indicator
Assert s Has_Watting i
To Produce s Is_A Received_Signal And
sis_A Received_But_Not_Processed_Signal
End Method;
—'>

-

—~ Method Reset(s: in received_signal)

- will indicate that the received_signal, s, has been
processed and cannot be processed again until a
new indicator has been received

End Reset;

I T

Method Reset(s: Signal) Is
Requires s Is_A Received_Signal And
s Is_A Received_And_Processed_Signal And
(s Has_Approaching i1 And
i1 Is_A Indicator) And
(s Has_Waiting i2) And
i2: Indicator)
Involves Retractil Is_A Indicator
Retract s Has_Approaching i1
Retract i2 Is_A Indicator
Retract s Has_Waiting i2
Retract s Is_A Received_Signal
To Produce s Is_A Signal And
NOT s Is_A Received_Signal
End Method;

— End Transitions

_.'>

End Signals;

Package Body Timer_Unit Is

_<'

- Transitions

2l

—~ Method Stop(t: Timer) Is
- Stop a running timer
- End Stop;

Method Stop(t: Timer) Is
Requires t Is_A Running_Timer And
t Expires_ine
Involves Retractt Is_A Running_Timer
Retract t Expires_Ine

27

To Produce t Is_A Timer
End Method;
N

.-<

-~ Method Start(t: Timer) Is

-~ Start a timer that is not running
- End Start;

Method Start(t: Timer) is
Requires tlis_A Timer And
NOT t Is_A Running_Timer And
t Has_Expiration_Value ev
involves Assertt Is_A Running_Timer
Assert t Expires_In ev
To Produce t Is_A Running_Timer
End Method;

_'>

-- End Transitions

..'>

End Timer_Unit;

Package Body Traffic_Light Is

-<

- Transitions

_<'
Method Switch(l: light)
will switch the color of the light in a given direction
(when red switch to green)
(when green switch to red)
End Switch;

Method Switch(l: Light) Is
Used When | Is_A Green_Light
Requires NOT | Is_A Red_Light
Involves Retract!Is_A Green_Light
Assert |is_A Red_Light
To produce | Is_A Red_Light And
NOT 1 Is_A Green_Light
End Method;

Method Switch(l: Light) Is
Used When | Is_A Red_Light
Requires NOT | is_A Green_Light
Invoives Retract | Is_A Red_Light
Assert |is_A Green_Light
To Produce | Is_A Green_Light And

28

NOT t Is_A Red_Light
En;! Method;

--’>

-- End Transitions

.-'>

End Traffic_Light;

Package Body Traffic_System Is

-

- Transitions

Method Do_Tick(t: Timer) Is
Decrements the number of seconds until a timer expires.
in the case where a timer has a secondary timer (i.e.,
one that runs at the same time), both timers are
decremented.

End Do_Tick;

Illllll)\

Method Do_Tick(t: Timer) Is
Used When tis_A Long_Timer Ortis_A Medium_Timer
Requires Timert Should_Tick Because of s And
t Expires_In w And
sis_A Received_But_Not_Processed_Signal
involves Retractt Expires_Inw
Assert t Expires_In (w-1)
Assert sis_A Received_And_Processed_Signal
-To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-1)
End Method;

Method Do_Tick(t: Timer) Is
Used When t Is_A Short_Timer
Requires Timert Should_Tick Because of s And
t Has_Secondary m And
t Expires_In w And
sis_A Received_But_Not_Processed_Signal
Involves Retractt Expires_Inw
Assert t Expires_In (w-1)
Perform Do_Tick(m)
To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-1)
: m Expires_in 1 fewer seconds
End Method;
-~

-

-<

-- Method Re_Start(t: Timer) Is

.- Stops and Starts the timer at its maximum expiration
-- time.

29

- End Re_Start;

Method Re_Start(t: Timer) Is
Requires Timert Shouid_Be_ReStarted Because of s
And
s Is_A Received_But_Not_Processed_Signal
Involves Perform Stop(?t)
Perform Start(?t) .
Assert s Is_A Received_And_Processed_Signal
To Produce s Is_A Received_And_Processed_Signal
t Has_Expiration_Value w1 And
t Expires_In w2 seconds And
wi=w2
End Method;
.-'>

-<' .

—~ Method Switch_Timer(t: Timer) is
Stops the currently running timer and starts the
short/medium timers for measuring light change
End Switch_Timer;

Method Switch_Timer(t: Timer) is
Requires Timer t Should_Switch Because of s And
t Switches_To pri And
pri Has_Secondary sec And
s Is_A Received_But_Not_Processed_Signal
Invoives Perform Stop(t)
Perform Start(pri)
Perform Start(sec)
Assert s Is_A Received_And_Processed_Signal
 To Produce NOT t Is_A Running_Timer And
pri is_A Running_Timer And
sec Is_A Running_Timer And
s Is_A Received_And_Processed_Signal
End Method;
—-'>

L]

—<

— Method Switch_Light(t: Timer) Is

- Changes the color of the light and stops running
timer(s).

—~ End Switch_Light;

Method Switch_Light(l: Light) is
Used When Long_Timert Expired_On's
Requires tlIs_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
Involves Perform Switch(l)
Perform Stop(t)
Assert s Is_A Received_And_Processed_Signal
To Produce
NOT s Is_A Received_And_Processed_Signal
End Method; ’

Method Switch_Light(l: Light) Is
Used When Short_Timer t Expired_On sig
‘Requires t Has_secondary s And
t Is_A Expired_Timer And
sig Is_A Received_But_Not_Processed_Signal
involves Perform Switch(l)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal
To Produce NOT t Is_A Running_Timer And
sig Is_A Received_And_Processed_Signal
End Method;

Method Switch_Light(l: Light) Is
Used When Medium_Timer t Expired_On sig
Requires tIs_Secondary_To s And
t Is_A Expired_Timer And
sig Is_A Received_But_Not_Processed_Signal
Involves Perform Switch(l)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal
To Produce NOT t Is_A Running_Timer And
sig Is_A Received_And_Processed_Signal
End Method;

— End Transitions

_.>

End Traffic_System;

31

.Case Study #2: A
_ Cleanroom Approach to the

Authors:
Fred Highland, Brent Kornman

IBM Corporation
100 Lake Forest Blvd
Gaithersburg, MD

1The following writeup has been edited slightly by Scott French and David Hamilton for inclusion in the
classroom material.

Introduction

Technologies such as Cleanroom Software Engineering (Mills, et. al, 1987) promise to
dramatically improve the quality of software products by allowing their correctness to be
formally verified. In order to use these technologies, the design must be specified in a
design language and verification techniques must be used to prove the design is correct.
Numerous languages and techniques have been developed to specify and verify the
designs for procedural software. However, very little has been done for Knowledge
Based Systems (KBS). The methodologies for designing KBS are poorly understood and
verification and test even less understood.

The purpose of this case study is to discuss a language for the design and verification of
KBS application software. The basic intuitions and requirements for the design language
are discussed first followed by an outline of the design language syntax and semantics.
Next, the characteristics of the language are applied to defined a solution for the traffic
controller problem.

Basic Concepts

The design language presented here is based on two important intuitions about KBS:
* they are a mixture of procedural and non-procedural programming techniques

 they are not just unorganized collections of rules and frames but are intended to
operate in a specific manner by the developer

The idea that KBS are built from a mixture of procedural and non-procedural
programming techniques derives from the fact that many solutions are not strictly
procedural or non-procedural in nature. Rather, solution approaches are composed of a
number of different subprocesses with different interactions. Some are dependent on the
results of other processes and must be organized procedurally. Others may be performed
independently or in parallel once the proper context is established. It is this latter type
that KBS technologies, with their implicit control mechanisms, are best suited for. But it
requires a mixture of the two forms to produce a complete solution.

The idea that KBS are not unorganized collections of rules and frames is more subtle.
While some useful systems have been built this way, most applications are of such a
complexity that some organization or process must be used to decompose the problem.
This typically takes the form of a set of steps that must be performed or sequences of
events that must occur in order to solve the problem. This may be represented with state
or control variables which determine which rules are applicable at any point in time or it
may be implicit in the changes and availability of the objects referenced by the rules. In
the latter case, control is provided more by the inference engine than by the user. But
often the implicit control is not exactly what is desired and meta-level controls or

changes to the rules must be used to produce the desired result. In either case, there is
implicit meta knowledge in the problem solving process which is usually present in the
mind of the application builder but often hidden in the implementation.

These two intuitions suggest that KBS application design could be captured in a language
that is based, in part, on existing procedural software design languages but with
extensions that exploit the characteristics of KBS programming.

Forpracuéaircasons, the aesign language must also meet the following requirements:

. the d&sxgn should be verifiable with a reasonable amount of effort and without a
deep understanding of the underlying KBS tool

« the design should be easily translatable into the underlying KBS tool's knowledge
representation language

These two reqiiirements are conflicting, in that the language, to be easily verifiable,
should be as procedural as possible since techniques for verifying procedural designs are
understood. However, for the language to be translatable to a KBS tool's representation
language, it must exhibit a non-procedural, declarative style, which is inherently difficult

to verify.
Design Language Specification

The KBS Design Language (KDL) implements the requirements defined above for a
design language. The following sections summarize KDL's definition in terms of syntax,
semantics and correctness conditions.

Syntax

The syntax of the unique components of the KDL is summarized in figure . This design
language is not meant to replace existing procedural design languages but rather to
augment them to deal with the concepts embodied in KBS programming. The definitions
of global_dara_definitions, local_data_definitions, and actions in WHEN and
WHENEVER statements are left unspecified in this definition so that structures from
other design or implementation languages may be used to specify details. This allows the
use of procedural control structures in the actions of WHEN and WHENEVER
statements in order to express functions that may be better expressed using procedural
means (e.g. WHILE loops, IF statements, etc.).

KB SEGMENT kb_segment_name (arguments)
[segment_intended_function]

. GLOBAL DATA
--global_data_definitions .

LOCAL DATA
~‘locdl data_definitions

[when_intended_function]
when_name WHEN
[condition_expression]

DO INTERRUPTIBLE
[when_action_intended_function]

actions
END

[whenever_intended_function]
whenever_name WHENEVER
[condition_expression]

DO
[whenever_action_intended_function]

actions |
END

END KB SEGMENT kb_segment_name

ﬁ;ﬁfe 1: KB Design Language Syntax
Semantics

The semantics of the design language are defined to accomplish the following goals:

* define the legal operation of the constructs
* restrict usage of the constructs to allow verification
* maximize the KBS tool independence of the language

The semantics of each of the basic components of the language, KB SEGMENT,
WHEN statements, and WHENEVER statements, arc discussed below.

KB Segments: The KB SEGMENT provides the highest level of modularization and
scoping for a knowledge base. It defines 2 logical unit of work that performs a single
[segment_intended_function]. KBS applications may be composed of one or more KB
SEGMENT s that may interact with other KB SEGMENT s or procedural functions.

p-

A KB SEGMENT is composed of definitions for global and local data, one or more
WHEN statements and zero or more WHENEVER statements. The WHEN statements
completely implement the :pv.segment_intended_function:epv. of the KB SEGMENT in
a non-deterministic manner. The WHENEVER statements support the WHEN
statements by providing opportunistic and data driven functions that can be used to
achieve the functions of a WHEN action. WHENEVER:s are not active outside of the
context of an active WHEN statement. However, their functionality can be shared by all
WHEN statements.

WHEN Statements: WHEN statements represent 2 condition under which one or
more actions are to be performed. Their intent is to explicitly represent meta or control
knowledge in the design of the system and the conditions under which that processing is
appropriate.

" The requirement of non-determinism of WHEN statements in accomplishing the
[segment_intended_function] allows for the specification of multiple possible solution
scenarios while forcing those scenarios to be independent of each other. This specifically
disallows the execution of a sequence of WHEN statements to accomplish the
[segment_innended__fnnction] as such would represent an implicit intent of control which
would be difficult to verify.

The WHEN statement is composed of a [when_intended_function], a
[condition_expression], and a WHEN action part. The [when_intended_function]
specifies the abstract condition under which this WHEN statement is appropriate, and the
effect it will have. The [condition_expression] provides a more concrete specification of
the appropriateness conditions. The WHEN action part specifies a sequence of functions
that implement the [when_action_imended_function]. These functions are specified with
procedural specifications that represent the sequence of processing. They may be
implemented using a mixture of procedural design statements and WHENEVER
statements. When WHENEVER statements are used, their intended function is specified
in the WHEN actions so that the WHEN statement can be verified in a self-contained
manner. The :pv.actions:epv. of 2 WHEN statement may also specify a CALL KB
SEGMENT action whose intent it is to invoke another KB SEGMENT.

The actions. of a WHEN statement allow two forms of execution to provide for different
implementation approaches. The DO form specifies that all actions within the structure
are executed sequentially without interruption. This is the normal semantic of procedural
programming languages and is appropriate if the implementation is to use either
procedural programming or rule actions without demons.

The DO INTERRUPTIBLE form specifies that WHENEVER statements apply
between each of the actions. This allows WHENEVER statements to be applied as soon
as the appropriate condition exists. DO INTERRUPTIBLE blocks may contain DO
blocks to specify that certain groups of actions are not interruptible. WHENEVER
statements apply only between individual :pv.actions:epv. and DO blocks within a DO
INTERRUPTIBLE block.

WHENEVER Statements: WHENEVER statements represent opportunistic or
data driven rules or demons that may fire at any time, and as many times as necessary
during the execution of a DO INTERRUPTIBLE block of a WHEN statement. If more
than one WHENEVER is eligible to fire (i.e. its [condition_expression] evaluates to
true) the order of firing of the WHENEVER statements can not produce different
results. As with WHEN statements, such a required ordering represents an implicit
control that should be explicitly stated in the design.

The components of a WHENEVER statement are similar to that of a WHEN providing
a whenever_intended_function., a [condition_expression], and a WHEN action. Unlike
the WHEN statement, however, the actions of 2 WHENEVER statement are performed
sequentially and are not interruptible by other WHENEVER statements.

Correctness Conditions

A set of correctness conditions or proof rules for verifying that a design is correct have
been defined. These allow verification of the design at various levels of abstraction,

allowing either top-down or bottom-up verification techniques to be used.

Using a top down approach, the verification stages and associated primitives are as
follows: ’

KB SEGMENT: [segment_intended_function] is implemented
by [when_intended_function]s

WHEN: [when_intended_function] is implemented by
WHEN statement

WHEN Action Parn: [when_action_intended_functionj is
implemented by WHEN actions

WHEN INTERRUPTIBLE Actions: WHEN actions are implemented by their
refinement and by applicable WHENEVER

statements

WHEN (uninterruptible) Actions: WHEN actions are implemented by their

refinement

WHENEVER [whenever_intended_function] is implemented
by WHENEVER statement

WHENEVER Action Part: [whenever_action_intended_function] is

implemented by WHENEVER actions

Correctness cenditions are defined for each construct or set of constructs at each level of
abstraction as mentioned above. The general approach to the correctness conditions is to
verify that the-components of the construct implement the function of the construct and
that the components are well behaved with respect to the restrictions imposed on them by
the semantics of the design language. This involves verifying that improper interactions
do not occur and that the results are deterministic.

The most significant part of the verification process with this design language is the
verification of the KB SEGMENT. and the WHEN INTERRUPTIBLE actions. The
verification of other parts of the language follows approaches similar to those used with

procedural programming languages.
The KB SEGMENT is correct if:

1 For all arguments, does performing all WHENSs accomplish
[segment_intended_function]?

2 Are all [when_intended_function]s independent of all other
[when_intended_function]s? That is, could the result of one
[when_intended_function] modify data used in another
[when_intended_function]?

The first correctness condition is easily verified by comparison with the
[segment_intended_function] and consideration of the data being processed. Each logical
set of data must meet the condition of and be properly processed by the
[when_intended_function]. The second correctness condition verifies that a WHEN
applies only once to a logical set of data. If sequences of WHENS are required to
accomplish the intended function, then there is implicit control that has not been
specified and has been left for the reviewer to discover. Hence, this restriction not only
makes verification easier but forces control to be explicit.

A WHEN INTERRUPTIBLE Action is correct if, for all arguments:

1 Does performing the implementation of the WHEN action and applicable
WHENEVERSs accomplish the action

2 Does the execution of applicable WHENEVERs terminate?

3 Does the execution of applicable WHENEVERSs produce the same results
regardless of order (i.e. is the result of the execution deterministic)?

These verification rules interact to verify that a set of WHENEVERs accomplish the
intended function of a WHEN action. These rules allow latitude on the part of the
designer in using WHENEVERs, but this must be balanced with verifiability. The first
rule requires that all WHENEVERSs in 2 KB SEGMENT be examined to determine if
their applicability is appropriate. The second rule allows multiple WHENEVERS to be
used to accomplish a function but requires that their termination must be verifiable. The
third rule requires that the results of execution of multipie WHENEVERsS be
deterministic and that implicit control sequences are not present. Verification of WHEN
INTERRUPHBLEacnmsmpomnaHydxfﬁcd:becauseofﬂxedxﬁaﬂtympmdeng
the sequence of WHENEVER application. However, the structure of the design
language encourages isolation of function to small sets of WHENEVER:s that are more
casily verified.

Discussion

The KDL provides a structure that distinguishes control and opportunistic knowledge in
the design of a KBS. The explicit representation of control knowledge is important
because it provides a means to specify the abstract control flow the knowledge base was
designed to use. As knowledge bases are typically data driven, this type of information
is often encoded in rules along with other information using state variables, priorities, or
the conflict resolution scheme of the underlying system. This makes the control Strategies
implicit and difficult to find, inhibiting understanding, debugging, and verification. By
providing a mechanism to represent control, the intentions of the designer are made
explicit and its correctness can be more easily verified. This does not restrict the
implementation from using traditional techniques, such as state variables or priorities, but
specifies the effect that must be acheived for the implementation to be correct.

While the explicit representation of control knowledge is important, the representation of
data driven and opportunistic knowledge is a key feature of the KBS approach. This is
also represented in the language in the form of WHENEVER statements. As these are
pattern driven procedural statements, they can be used to represent any processing that
should be performed under a given set of conditions. They can also be used to represent
demons triggered by various actions that occur against data in the KBS making this
representation useful for mixed KBS and Object Oriented paradigms.

The work done on TOP (Terms, Operators, and Productions described in the first
solution to the Traffic Controller problem) embodies many similar concepts to the work

presented here. TOP Operators have similar characteristics to WHEN statements and
TOP Productions have similar characteristics to WHENEVER statements. TOP Terms
provide 2 much more formal definition of knowledge base objects and their semantics
than is specified in the KDL. In general, the TOP language is a precise KBS
development language that can be used to specify designs and be automatically translated
into a particular KBS tool langange. The KDL is 2 much more flexible extension to
existing design languages. Additionally, the verification arguments for TOP have only
been informally defined and the language does not contain the semantic restrictions that
simplify verification. The KDL provides restrictions on the use of language constructs,
defines of the relationship between the constructs, and provides formal correctness
conditions to allow verification to occur. However, the similarities of the two efforts
should allow some of the verification characteristics of KDL to be applied to TOP.

A more general approachto knowledge base verification involving the use of relational
verification techniques has been proposed. However, these techniques are difficuit to
use, making them currently impractical for use on real problems. The KDL attempts to
avoid this problem by separating control and opportunistic knowledge and providing
mechanisms for defining the function of groups of opportunistic rules to limit the need
for relational verification to small, easily managed sets of rules.

The KDL is being used in the development of the Automated Problem Resolution (APR)
prototype. The APR prototype is an aircraft flight replanning system being developed as
part of a study for future upgrades the the U.S. Federal Aviation Administration's Air
Traffic Control system. The system requires the generation of multiple aircraft
maneuvers in a multiple problem environment and is a non-trivial problem in terms of
representation, problem solving approaches, and performance.

Our experience with the design language to date has been very positive. It provides a
vehicle to represent the designs that we are specifying for the APR project. It allows us to
specify the types of processing we expected to do in with KBS tools (TIRS in this case)
with a minimum of restrictions. It also provides a good mechanism to abstract the design
at various levels allowing the use of top-down stepwise refinement techniques. Because
of the issue of verifying the scope of applicability for WHENEVER processing, it
sometimes forces the structuring of the design into multiple KB segments cach with their
own control and opportunistic sections. While this suggests the use of sub-KBs or
similar restrictive scoping mechanisms, this is not required by the design as long as the
semantics are the same. Hence, we expect that many of the KB Segments will be
implemented as guarded sets of rules rather than sub-KBs. The verification rules for the
design language are usable, allowing verification to occur quickly with minimal
consideration of complex situations. The only problems occur with the use of
WHENEVERSs. The language allows WHENEVERs to be used in arbitrarily complex
sequences. While this effectively allows the use of KBS programming techniques, it can
be difficult to verify in complex cases. The need for verification of the design often
encourages simplification of the design in these cases. Most importantly, the use of the
design language allows us to verify the correctness of the designs and utilize Cleanroom

. Software Engineering effectively in the development of APR.

Summary and Conclusions

A design language for KBS has been described along with a brief description of the
verification approach that is to be used with the language. The language is an extension
of existing procedural design languages with structures for specifying control and
opportunistic components of KBS designs. The language supports the development of
KBS software using top down development and Cleanroom Software Engineering
techniques in a practical manner.

The design language is being used in the development of the APR aircraft flight
replanner prototype. Based on our experience to date, the language seems to provide
sufficient representational power to specify the types of processing expected in a KBS
while providing a practical mechanism for verifying the correctness of those designs.

While the language provides a good starting point for the use of design language and
verification techniques with KBS, there are a number of areas still to be investigated. The
language has only been used on a single project to date. While this project is relatively
large (1500+ rules) and utilizes a number of different problem solving techniques, there
is potential benefit from using this language in the development of other projects with
different characteristics. It has also been suggested that this langnage would be useful for
mixed KBS and object oriented paradigms, but this has not been investigated. Concepts
such as formal descriptions of data and their semantics, such as that provided in TOP, are
not currently part of the language and extension of the language to use data descriptions
should be possible and beneficial. Finally, the use of the language to represent problems
solved using backward chaining reasoning needs to be explored.

‘KDL Solution to the Traffic Controller Problem

A simple traffic light controller at a four way intersection has car arrival sensors and
pedestrian crossing buttons. In the absence of car arrival and pedestrian crossing signals,
the traffic light controller switches the direction of traffic flow every 2 minutes. With a
car or pedestrian signal to change the direction of traffic flow, the reaction depends on
the status of the auto and pedestrian signals in the direction of traffic flow: if auto
pedestrian sensors detect no approaching traffic in the current direction of traffic flow,
the traffic flow will be switched in 15 seconds, if such approaching traffic is detected, the
switch in traffic flow will be delayed 15 seconds with each new detection of continuing
traffic up to a maximum of one minute.

Observations

The problem is inherently a realtime asynchronous processing problem. Such problems
are not easily solved or understood. In that the intent is to provide a simple example, the

problem will be formulated as a synchronous problem.

10

Assumptions

The following assumptions represent an interpretation of the requirements in areas that
were potentially ambiguous:

1. Traffic flow in the direction of the signal has no impact on the changing of the
signal when no traffic is waiting in the opposite direction. The wording of the
requirements seems to indicate that the 15 second time extension applies only
when traffic is waiting (It is possible to apply this 15 second extension to the 2

_minute default when no traffic is waiting. Some traffic controllers do work this
way as it minimizes impacts on traffic flow that are not necessary.)

2. The solution must allow for momentary action pedestrian crossing signals.
While an auto sensor will generally be on once an anto is waiting to cross the
signal, pedestrian crossing signals tend to be push-buttons that are only on
momentarily. The solution will assume that once such a button is pushed. The
pedestrian remains in the "waiting to cross” state until the signal changes. If this
assumption were changed to use sample/hold circuitry in the sensors, the use of
the traffic_waiting variable would not be required.

3. The pedestrian and auto waiting signals are "ored” together for a given direction
of travel. This simplifies the processing of sensors as only one needs to be read
for a direction.

4. The delay of traffic flow switch is interpreted to mean that a delay of 15 seconds
from the time of detection is to be applied. Other interpretations, such as adding
an additional 15 seconds to the current delay, are also possible. However, most
traffic controllers seem to work in the manner assumed here.

Solution Approach

The solution utilizes a polling approach that polls the sensors and performs switching on
a 1 second cycle. (Note that this is a simplification of the more general event driven
approach with asynchronous timers that would probably be used to implement real traffic
light controllers.)

On each cycle, the system will increment the intemal timers, read the sensors and update
the traffic light if necessary. This forms the basis for the control logic of the system that
is represented in the WHEN statement.

Two timers are maintained. The "time" timer represents current time and is used in
conjunction with the switch_time variable to determine when it is necessary to switch the
traffic flow. The wait_time represents the number of seconds traffic or pedestrians have
been waiting to pass. Only two timers are needed for this problem because there are only

11

two directions of travel and the uses of the timer are mutually exclusive. If the problem
were more complex, e.g. a three way intersection, more timers would be required.

The usage of the timers is as follows:

1.

2.

The time is incremented on every cycle of the system.

The wait_time timer is incremented whenever there is someone or something
waiting.

Whenever a vehicle or pedestrian is first detected in the stopped direction, the
switch_fime is set to time + 15 seconds.

Whenever a vehicle or pedestrian is detected in the flowing direction and a
vehicle or pedestnan is wamng in the stopped direction the switch_time is (re)set
to time + 15 seconds

Whenever the time = switch_time, the traffic lights are swnched. the
switch_time is set to time + 2 minutes and the wait_time set to 0.

Whenever the wait_time timer reaches 1 minute, the traffic lights are switched,
the switch_time is set to time + 2 minutes and the wait_time set to 0.

Notational Conventions

1.

We have adopted the notational convention that if there is only one When and
the Segment intended function is the same as the When intended function then
the intended function of the When can be omitted. '

We have adopted the notational convention that TRUE -> I (the identity
function in conditionals) is assumed if no alternative is given.

We have adopted the notational convention that frame instances or classes can
bercferredtomthedeslgnusmgthexrtype/classname This is used in the
Crossing_traffic whenever.

Proof

_When Intended Function implements Segment Intended Function;

Since they are the same, this is obvious.

When St i ed Functi

12

The When statement condition is always true. The When statement action
consists of initializing variables to indicate that the light has just switched traffic
flow to initial_flow_direction and and changing traffic flow for every second in
time per the When Intended function. Hence, the two are equivalent.

%

When S itialize implements it's Intended Function:

Using the correctmess conditions for KDL, the statement verifies if its
implementation and all applicable Whenever statements implement the intended
function. In this case, the implementation implements the intended function, and
it can'be seen from inspection that no Whenever's are applicable since they all
utilize a state variable that does not currently have a value.

When For ent implements it's Inten Function;

By the correctness conditions for For statement verification, the statement
verifies if the composition of its body intended function for each iteration
implements the For statement intended function.

While the For appears to be infinite, making verification impossible, it is
actnally not. Since wait time is incremented if traffic is waiting, the wait time
condition will eventually be reached. If traffic is not waiting, the third intended
function will do nothing until the switch time is reached (which will eventually
happen since time is incremented by the For loop). It is therefore sufficient to
verify that the composition of the For body for all sequences up until the
switch/wait time condition is met is correct in order to verify correctness of the
For.

The verification of the For loop requires that the alternatives of the For's
intended function be implemented. These are:

1. If no traffic is waiting to cross, change traffic flow in 120 seconds.

2. If waffic is waiting to cross and there is no traffic in the current direction
of flow, change traffic flow in 15 seconds.

3. If traffic is waiting to cross and there is traffic in the current direction of
flow, change traffic flow in 15 seconds, but not more than 60 seconds

total wait.

13

Verification of Condition 1: If no traffic is waiting to cross, time will be

incremented by the for loop until the switch time is reached. When the switch
timeisreached,u'afﬁcﬂowwﬂlbeswnchedandtheswnchnmereset. As time
is set to 120 initially and is set to time+120 on each switching, traffic will be
switched every 120 seconds if no traffic is waiting.

Yerification of Condition 2: If traffic is waiting and no traffic is detected in the

direction of flow, the third intended function will set traffic switch time to
time+15 seconds, and indicate that traffic is waiting. The traffic_waiting
indicator will prevent the time from being reset if no other events occur. As time
is incremented on each cycle, traffic will be switched in 15 seconds if no other

events OCCIII

. - f\“

mmmnmn} Ifmfﬁcxsa].readywamnganduafﬁcmdeﬁected

in the direction of flow, the second intended function will reset traffic switch
time for time+15 seconds. If traffic is currently (sensor input) waiting, the
switch time is reset to 15 seconds regardless of whether there is traffic in the
current flow direction or not. In addition, the first intended function will
increment wait time whenever traffic is already waiting. The "switch time"
intended function will switch traffic flow whenever the switch time reaches 0 or
the wait time reaches 60. Therefore, the condition is implemented by the
composition of the intended functions.

By the.correcm conditions for DO INTERRUPTIBLE intended functions,
the function is correct if its immediate actions and applicable whenevers
implement the intended function in a deterministic way.

The immediate actions consist only of read operation which is assumed to be

correct. By inspection it can be seen that no whenevers are applicable as the
value of state is not set.

14

10.

The immediate actions consist only of an assignment to the state variable. The
only whenever applicable as a result of this state variable assignment is
Update_Wait_Time whose intended function is identical to the intended function
of the statement here with the addition of the check for wait time update

required.

" While this is a trivial example, it indicates the use of state variables to isolate the

function of whenevers and the use of whenevers to implement conditional logic.

Switch time/Wait time Intended Function:

The immediate action contains only an assignment to the state variable. By
inspection of the whenevers, it can be seen that only the Switch_traffic and
Crossing_traffic whenevers are applicable. From their intended functions, it can
be seen that they each implement one alternative of the original intended
function. Since they both indicate that traffic flow change is not required as part
of their actions, they will be mutually exclusive.

Update Wait Time Whenever:

The condition and action of the whenever match thc' intended function of the
whenever. By inspection, it can be seen that no other whenevers are effected.

Switch traffic Whenever:

The condition and action of the whenever match the intended function of the
whenever. By inspection, it can be seen that no other whenevers are effected
since they action of this whenever changes the state such that other whenevers

are not applicable.

Crossing traffic Whenever:

The condition and action of the whenever match the intended function of the
whenever. By inspection, it can be seen that no other whenevers are effected
since the action of this whenever changes the state such that other whenevers are

not applicable.

15

KDL Solution for the Traffic Controller Problem

KB SEGMENT traffic_light_controller (IN: sensor_stream, initial_flow_direction)
[Given a traffic light just switched to initial_flow_direction,
For every second in time:
No traffic waiting to cross —>
change traffic flow 120 seconds after last change
[no traffic in current direction of flow -->
change traffic flow 15 seconds after
detecting traffic waiting to cross
| change traffic flow 15 seconds after
detecting traffic in current direction of flow
but not more than 60 seconds after
detecting traffic waiting to cross |

LOCAL DATA
Parameter Switch_time: Parameter Wait_time:
Type: Integer Type: Integer
end end
Parameter Flow_direction: p eter Traffic_waiting:
Type: i - ’
(EASTWEST NORTHSOUTH) m?p"" Boolean
end
Parameter Time: Parameter State:
Type: Integer Type: (UPDATE_WAIT_TIME,
end SWITCH_TRAFFICNULL)

Frame Type Flow_sensor:
Direction: Type:
(EASTWEST ,NORTHSOUTH);
Traffic_detected: Boolean;
end

Frame Northsouth_lane:
Direction: NORTHSOUTH
end

end

Frame Eastwest_lane:

end

WHEN
true

DO INTERRUPTIBLE

[Flow_direction Switch_time,Wait_time Traffic_waiting =

initial_flow_direction,120,0,FALSE]

Flow_direction := initial_flow_direction
Switch_time := 120

Wait_time := 0

Traffic_waiting := FALSE

State ;= NULL

[For every second in time:
No traffic waiting to cross -->
change traffic flow 120 seconds after last change
| no traffic in current direction of flow -->
change traffic flow 15 seconds after
detecting traffic waiting to cross
| change traffic flow 15 seconds after
detecting traffic in current direction of flow
but not more than 60 seconds after
detecting traffic waiting to cross |
FOR time := 0 to forever
[Read traffic direction sensors]
Read(Sensor_stream,
Eastwest_lane.traffic_detected,
Northsouth_lane.traffic_detected)

[Traffic_waiting —> Wait_time := Wait_time + 1]
state := UPDATE_WAIT_TIME :

[time = switch_time | wait_time = 60 —->
change traffic ﬂow,

switch_time,wait_time sraffic_waiting := time+120,0, FALSE
| ((sensors detect traffic waiting & not wajffic_waiting) /

(traffic_waiting &

sensors detect traffic in current direction of flow)) -->

switch_time traffic_waiting = time+15,TRUE]
state := SWITCH_TRAFFIC

END WHILE

END

17

[Wait time update required & Traffic_waiting -->
Wait_time := Wait_time + 1]
Update_Wait_ Time: WHENEVER

state = UPDATE_WAIT_TIME and
traffic_waiting

DO
wait_time := wait_time + 1

END

{ mraffic flow change required &
(time = switch_time | wait_time = 60) -->
change traffic flow;
switch_time,wait_time traffic_waiting := time+120,0 FALSE;
indicate that traffic flow change is not required]
Switch_trafficc WHENEVER

state = SWITCH_TRAFFIC and
(time = switch_time or wait_time = 60)

DO

[Switch_time Wait_time Flow_direction,Traffic_waiting :=
time+120,0,n0t Flow_direction FALSE]

Switch_time := time+120

Wait_time :=0

Flow_direction := not Flow_direction

Traffic_waiting := FALSE

state := NULL

END

18

[traffic flow change required &
not (time = switch_time [wait_time = 60) &
((sensors detect traffic waiting & not traffic_waiting) |
(traffic_waiting &
sensors detect traffic in current direction of flow))—>
switch_time traffic_waiting = time+15,TRUE;
indicate that traffic flow change is not required]
Crossing_trafficc WHENEVER

state = SWITCH_TRAFFIC and

not (time = switch_time or wait_time = 60) and

((flow_sensor.traffic_detected = TRUE and
flow_sensor.direction <> Flow_direction and

traffic_waiting = FALSE) or

(traffic_waiting = TRUE and
flow_sensor.traffic_detected = TRUE and
flow_sensor.direction = Flow_direction))

DO
[Traffic_waiting Switch_time := TRUE time+15]
Traffic_waiting := TRUE
Switch_time := time+15
state := NULL

END

19

. une cin
Purpose and Background

The purpose of this system is to perform on-board functions required to prepare a space vehicle for
Yiftoff, monitor for exrors, and respond to errors. The space vehicie is a new type that has never been
flown before. Becanse the pre-launch activities and checks must be performed so quickly just prior to
launch, a human can not perform these fanctions; this means that there is no existing human expert that
does this job.

Functions

The functions to be performed are:

1. Perform nominal launch sequence functions (NLSFs). Each NLSF has a
command which will perform the function and a set of constraints about when
must be met before the command can be issued. Each NLSF aiso has other
constraints on when it can/should be performed depending on its relationship to
other NLSFs. Finally, each NLSF is judged to have been successful depending
on the truth of exit conditions: The NLSFs are documented in Table 1.

2. Monitor error condiitions. Error conditions are context sensitive in that they are
monitored under certain conditions. The monitoring conditions and when they
should be monitored are documented in Table 2.

3. Respond to errors. An error condition occurs when a check (i.e., monitor) fails, a
function fails to complete, or it has been determined that functions can not be
issued at the right times to achieve main engine ignition at MET=0.0 seconds.
The specific error recovery actions are documented in Table 3.

Table 1: Nominal Launch Sequence Functions

FUNCTION CONSTRAINTS EXIT CRITERIA

must occur at MET=0.0. It must
also occur between 2 and 2.3
seconds after secondary engine
thrust has buailt up.

Secondary Engines Ignition Must occur within 2 seconds of | engine thrast > 90% (usually
propeilant bleed valve closure. | takes about .5 sec)

Terminate direct ground link main engine ignition ground link termination

Table 2: Monitoring Conditions

MONITOR CONDITION CONTEXT

Engine Communication Failure | Engine Command Word Bit 1 checked each .1 sec
_Dot reset upon receipt
Engine Failure Thrust lower than checked each 5 sec after engine
(<90% 2 seconds afier start) igniti
PIC ignition voitage Must achieve count of 100 checked each second after
within 4 sec of amning and not | arming until ignition
drop below 90
Table 3: Error Recovery Actions
ERROR CONDITION RECOVERY ACTION
Engine Communication Failure | Bit 1 not reset on two If no engines are sunning, issoe
consecutive commands. laanch bold.
If main engines not started,
shatdown engines and issoe
lagnch hold.
If main engines started,
shutdown failed engine only if
doing so will still maintsin
overall thrust within safety
limits
Correctness Considerations

It is extremely critical that monitoring and ervor recovery be functionally correct and the correct recovery

action is performed within .1 seconds afier the error condition occurs.

Ik is critical that NLSFs be sequenced correctly.
Although the launch processing system has no direct user interaction, there is a need to display status of

launch sequencing.
Hints

Note that the tables do not specify all the details and oaly include sampies. Only develop a test approach,
Dot a compiete set of test cases. Note in your planning that safety is an important consideration (might
infiuence cost). Also think about what things could go wrong and what the consequences might be.

_ File Management Interface
Background/Purpose

There is 2 simple file management system that accepts a command in a specific format and performs the
indicated operation. For example, the user can type "COPY filel file2" to copy filel into file2. The
purpose of this new program is to provide a natural language interface to the file management system
(i.e., on top of the existing command line interface). The new program will accept a free form natral
language command like "put file1 at the end of file2" and will figure out the correct file management
command to issue like "copy filel file2 /APPEND".

Functions

The commands accepted by the file management system are
COPY filet file2 /APPEND /REPLACE /NOPROMPT
(noprompt option is used with the replace and move options; the user is
not prompted if file2 already exists)
RENAME file1 fie2 NOPROMPT
(the noprompt option does not prompt the user if file2 aiready exists)
DELETE file1 NOPROMPT
(the noprompt option does not prompt the user if fle1 does not exist)
USE file1 file2 ... IN filen
(this command inputs files appearing before the word IN to the program
specified in filen)
LIST pattern
(this command searches for files matching the pattern and lksts them;
the pattern allows an asterisk to appear as a wildcard for one or more
characters)

The allowed natural language inputs should include the use of alternave verbs such as move, replace, put,
erase, discard, throw away, execute, invoke, etc. The input sentences should also be allowed to occur in
any natural order such as "replace file2 with filel”.

Hints

This about safety, robustness, and how much the system should "goess” about what the user wants to do.
Think about the possible test cases that might be needed for compiete coverage and alternatives to
compiete coverage. Also, you can assume the existence of a dictionary online in machine readable (and
searchable) format.

Car Won't Start Diagnosis

This is a standardly used simple car diagnosis problem. It requires littie outside knowledge of how cars '
wark. The purpose of this program is to query the user for information about symptoms and then
determine the best guess of why the car will not start.

Functions
Objects

The relevant parts of the car are:
BATTERY
STARTER MOTOR
STARTER SOLENOID
SPARK PLUGS
DISTRIBUTOR
CARBURETOR
GAS TANK
FUEL PUMP

The function of this program is to determine which of the above objects is the most Iikely reason for the
engine not starting. The following diagnosis information was obtained from an expert mechamic.

The easiest things to check are the gas tank and the battery. If the gas gange reads empty and the engine
turns over then the most likely canse is the gas tank is empty. If the headlights don't shine brightly and
the engine does not tum over then the most likely canse is the battery.

If both the gas tank and battery are fine and the engine does not turn over then the most likely cause is
either the starter or the starter solenoid. If you can hear a “clicking sound”™ when you try to start it, then it
isyxobablythestarm,elseitisprohablydcsolmoid.

If the engine does not tum over then the likely place is somewhere in the ignition system (spart plugs or
distributor). Checking these is a little tricky for the novice but can be done. The first thing to do is to
check spark getting to each plug. This can be done by removing the wire to each plng and holding it close
to the plug (so the metal piece inside the wire is very close to the plug). If you can see a spark whea
trying to start the engine then the distributor is ok and the pings are the likely problem, eise the
distributor is the likely problem. When performing this procedure, there is the possibility of a suyprising,
buat not harmful, shock which can be avoided by wearing heavy rubber gloves (this should not be
atempted by anyone with a beart condition).

Finally, if the engine tums over and runs for a littie while (even if it is less than a second) then the lkely
cause is in the foel system, either the carburetor or the fuel pump. The foel pump can be checked by
removing the line from the foel pump to the carburetor and then very triefly trying to start the engine. If
gas strongly squirts out from the line then the foel pump is fine and the likely cause is in the carburetor.
Note that this last procedure is very dangerous and shouid only be attempted by an experienced user (¢.g.,
a mechanic) and only when the engine is cold.

Hints

Try organizing the diagnosis information in such 2 way that you can ideatify what the test cases should
~ovez. Also think about what are critcal, not critical, safety, mandatory, and not mandatory requirements.

_ Wsakup Call Processing
Purpose and Background

AmdMgﬂwgﬂhaﬂ&dﬂdwmnm&dmﬁpaﬂmfmeaﬂﬁ
mmdznquhmmdkwsimmeﬁngs.maemalmofdebaemﬁe"puklmdﬁme“m
At peak load time (around 7AM), there are many more wakup calls than the system can handle at once.
so the calls must be prioritized. After much debate and consulting experienced operators, a prioritization

Functions
A. Prioritization

Wamﬁnmwmuwmdmhmd&muﬁ@dmm(ﬂnm
apenﬁve)ptﬁstpﬁody.dnnmdhmdasomndﬁmﬂthdmm&ﬂsmw
Wmﬁngmwﬁchaﬂsmnmdﬁmndamﬂhgmhuwh:awzkwpaﬂm
isbemhglhelmkgimdxﬁnsmewdghsmsm&ﬂnmkmif
wahlpanAmannmdmehmbeﬁnemknpaanmwahpanBismmﬂydmm
1ate then wakup call B has a higher priority (60 for A vs. 66 for B).

A call can be given a higher priority in two ways.

1. it is more than twenty minutes late .
2. it is given "special priority” (this is not determined by this system but is
predetermined)

Kdﬁapﬁoﬂty—niﬁngmﬁﬁmhd&.dmaﬂwﬂbegivmﬁghupﬂoﬁtywiﬂinamomd&.ﬁ
both conditions hold then the call with be given higher priority over all room classes.

B. Early Calling

Dnﬁngﬁmsofthedaylhﬂmknownmbepukloadﬁms,aﬂsmbe given in advance of the
requested time (to try to avoid getting behind). For determining calls to be given eardy, the prioritization
above works exactly in reverse with the following exceptions.

1. high class can be called up to 5 minutes early

2. medium class can be called up to 10 minutes early

3. low class can be called up 10 20 minutes early
4.ifﬁ1espeddpﬁaiyﬂagissetmenﬂ1ocancanbemadeuptozonﬁmbseady

There are two additional considerations. The first is that a late call always has priotity over an eardy call
The second is that if two or more calls have the same priority then the choice is arbitrary.

Hints

Consider which parts of this system fit the expert system characteristics and which parts are more
mmwwummmmmmmmm
would this infinence you test approach ? Are there any critical aspects that deserve more attention than
others ? Could the system monitar itself to see if it were operating correctly ?

Description of Monkeys and Bananas Problem

mmonofthepmblnmdaaipﬁonism:wmundzmm(mm.

Monkeys and Bananas

From the original NASA description. The presentation has been changed slightly.

Characteristics of abjects and actions

The monkey has the following characteristics:

1. It has a location.

2 Tt is located on top of something (the floor or another object).

3. It may be holding an object.
An object has the following characteristics:

1. It has a location.

2 Itishmedonwpofmzthing(theﬂommmthuobiea),orhismachedwthecdﬁng

3. It has a weight (either light or heavy).
Inaddiﬁon.mobieahasthefonowingchm:misﬁaﬂ'itisam

1. It contains another object.!

2 Itjsrmlockedbyanothcobiea(ak:y).
‘Ihemonkey:naymanobiectmdzthefonowingcond'nions:

1. There exists a goal to eat the object.

2. The monkey is holding the object.
mmonkeymayholdanobieanndzth:fonowingeondiﬁons:

1. There exists a goal to hold the object.

2 The monkey is at the same location as the object.

3 Theobieakamchedwtheedingmdthemonkeyismwpofth:hdda,“mbommcmonkey
andtheobiectmontopofthemcphcc(ehhﬂtheﬂoororanothcrobiect).

4. The monkey is holding nothing.

5. The weight of the object is light.
mmkeymaymovetoaloaﬁonmderthefonowingeondiﬁons:

1. There exists a goal to move to the location.

2. The monkey is on the floor.

11 Editor’s note: Presumably this should be “it may contain another object.”

12 Editor’s note: and the ladder as at the same location.

The monkey may climb onto an object under the following conditions:
1. There exists a goal to climb onto the object.
2. The monkey is holding nothing. 13
3. The monkey is at the same location as the object.
4. Both the monkey and the object are on top of the same place.

initial Conditions

The goal is to eat the bananas 4
Table 1. Initial conditions. Empty entries indicate that the attribute does not apply to the object.
object location om top of holding weight contains uniocked

by
monkey t5-7 geen nothing
couch

green t5-7 floor bheavy
couch
red couch t2-2 floor hesvy .
big pillow t2-2 red couch hght
red chest 12-2 big pillow Light ladder red key
blue couch | t8-8 floor bexvy
blue chest t7-7 ceiling Light bananas blue key
green chest | t8-8 ceiling bght blue key red key
red key tl-3 floor higixt

Actions

The monkey may jump onto the fioor under the following conditions:
1. There exists a goal to jump onto the floor.
2. The monkey is not on the floor (see jumping up and down).
The monkey may drop an object under the following conditions:
1. There exists a goal to drop the object.
2. The monkey is holding the object.

| ”Editor’snou:mmu&mhmmﬁsmhmdm—hmnkmm
this restriction is incorrect because it would prevent the monkey from climbing the ladder with the key (to unlock
chest containing the bananas).
16 Editor’s note: The goal is for the monkey to eat the bananas.
15 The original description missed out the following:
* The red key is on top of the floor.

Note:theobiectmaybedmppeddxhu'omotheﬂoororthephceth:monkeyison.
'I'h:monk:ymzymlockachstmderthefoﬂowingcondiﬁons:

1. There exists a goal to uniock the chest.

2. The chest can be unlocked by another object (the key).

3. The monkey.is holding the key.

4. The monkey is at the same location as the chest.

5. Boththemonkcy-andthech@stareontopofthcm:plm

Nou:whmachmismbcked,theobjectitcomainsisphadontopofth:chst.

Commentary

Ahhonghmepﬁmrypddtﬁspmblmkfwmemonkeywwmbmmanhoﬁhegoakmmdm
be attainable separate from the primary goal. That is, it should be possible to change the goal from eating
mmwmwammmm@gamm The solution need not support
multiple initial goals.

The word “ "nw@mmmbmmmmwmbmmmuwmﬂ

problem. Knowledgeupmanaﬁonshouldmtbea:ﬁﬁwdforspedwhmsdvingthcpmbln

mbm:hmad:shouldbeabletommdettwomods. One mode shouid run the benchmark printing all
mmww&m,mwmmmwmmammmm
has eaten the bananas. Twospmmonsofthebendmatkmawgeswhchinaﬁnghvusionofthe

benchmark are suitable to provide this capability.

16 Editor’s emphasis.

Handout #1: State Diagram for the Simple

A state diagram is helpful in analyzing a pr
This also reduces the implementation approa
the most recent state and the current state to
#2 implements the state diag

follows:

31:

So:

Traffic Controller

2M_Timer := Clock+2 Minutes
NS-Light := Green

2M_Timer Is Unchanged
NS-Light := Green
Clock Updated by 1 second

1M_Timer := Clock+1 Minute

15S_Timer := Clock+15 Seconds
NS-Light := Green

NS-Light := Green

1M_Timer Unchanged
15S_Timer Unchanged
Clock Updated by 1 second

NS-Light := Green

1M_Timer Unchanged
15S_Timer := Clock+15 Seconds

NS-Light := Red
2M_Timer := Clock+2 Minutes

ocedural solution to the simple traffic light problem.

ch (see handout #2) to a simple process of checking
determine a new state. The procedure in handout
ram of figure 1. The specific states in that diagram are defined as

Handout #1

Figure 1

The matrix of figure 2 presents an altemate view of the state diagram in figure 1. Even though
this state diagram eases the implementation of a procedural (or rule-base) solution, it can be
complicated to use in defining test cases because of its level of detail. To address this
complexity, define an abstract view of the state diagram in figure 1. Figure 3 shows an abstract

2 Handout #1

state diagram that relates to the diagram of figure 1 (see figure 4 for the associated transition
matrix). The abstraction considers the "essence” of what is taking place in the system. That
essence is the process of deciding which the period of time to expire before changing the light
{the * in the transition matrix of figure 4 indicates that the light will change as a “side-effect” of the
state transition). It is important, however, to maintain a clear mapping between the abstraction
and its refinement. In this example, the mapping is clear by examining the matrix of figure 2.
Notice how the state transitions tend to fall into two distinct groups (the upper left and lower right
comers of the matrix). These relate directly to the two abstract states shown in figure 3.

Testing the system, then, is reduced to testing either view of the system. The premise for this
approach is based on the correctness of the state diagram itself. It the state diagram is correct
and the transitions between states have been implemented comrectly then it would be reasonable
to predict that the implementation is correct. Testing is now much simpler (especially when using
the abstract state diagram) because the number of scenarios has been reduced. For example,
usingthestatedagramofﬁguresmema'emly4u'ansiﬁonstocorsider(asopposedtoa
potentially infinite number of scenarios). Testing, then, will test the transitions. This is
sometimes referred to as "conformance” testing (i.e., showing that the implementation conforms
to the abstract view).

3 Handout #1

Tii.j) $4 S2 S3 Sa Ss Se
S4 NS No EW Waiting
Approaching approaching
and no and no
waiting traffic waiting
Sz NS No Waiting 2M Timer
approaching approaching signal and expired
and no and no not 2M Timer
waitingand waiting and expired
not 2M Timer not 2M Timer .
expired expired
S3 No Approaching
approaching
S Not 158 Approaching (1M Timer
Timer And Not 15S Expired) Or
Expired And Timer (Not 1M
Not 1M Timer Expired And Timer
ExpiredAnd Not 1M Timer Expired And
No Expired 15S Timer
Approaching Expired)
Ss No Approaching 1M Timer
Approaching And 1M Expired
and Not 1M Timer
Timer Expired
Expired
S¢
Figure 2

4 Handout #1

Abstract State Diagram

Toa Too

T1,Q
51 T2,1 SQ

Figure 3
Ta.p $1 S2

S (No waiting) Or (2 Minutes Waiting
expired and No
approaching®)

S2 (1 Minute expired since Approaching

switch from S¢*) Or (15
Seconds expired since last
approaching”)
Figure 4

5 Handout #1

Handout #2: Procedural Implementation

Procedure Traffic_Controlier Is

—<*

- The Traffic controller uses the notion of a Timer to determine
-- when to change the flow of traffic. Each timer represents

-- a window in time beginning at the current clock time plus some
-- some delta.

—.>

2M_Timer, 1M_Timer, 15S_Timer : Timer;

*

-<

-- Returns TRUE when traffic is approaching in the current direction
- of traffic flow at the current clock time

-~ ELSE > FALSE

-.>

Function Approaching_Traffic Return (True, False);

*

—<

- Returns TRUE when traffic (auto or pedestrian) requests a
- change in the light at the current clock time
- ELSE -> FALSE

-<

—<

—‘>
Function Wait_Signal_Received Return (True, False);
-- Returns the current time
...>
Function Clock Return Time;
- Returns TRUE when the current clock time exceeds the time
- specified by the Timer
— ELSE -> FALSE
—.>
Function Expired(T: In Timer) Retum (True, False);

-<

.- Switch from the current direction of traffic flow to the opposite
—.>

Procedure Switch(L: In Out Light);

1 Handout #2

State : Current State of the Traffic Controller

Possible states the Traffic Controller can be in are:

Sq: 2M_Timer := Clock+2 Minutes
NS-Light := Green

Sa: 2M_Timer Is Unchanged
NS-Light := Green
Clock Updated by 1 second

S3: 1M_Timer := Clock+1 Minute
15S_Timer := Clock+15 Seconds
NS-Light := Green

S4: NS-Light := Green

1M_Timer Unchanged
15S_Timer Unchanged
Clock Updated by 1 second

Ss: NS-Light := Green
1M_Timer Unchanged
156S_Timer := Clock+15 Seconds

Se: NS-Light := Red
2M_Timer := Clock+2 Minutes

State := S1;
Loop
Case State Is
When in S1 => perform S transitions
When in So => perform S» transitions
When in S, => perform S, transitions
End Case;
Update Clock;

End Loop;
End Traffic_Controller;

2 Handout #2

.-<*

-- S4 Transitions

-- Decision Table:
- Waiting Approaching | Satisfied By:
- T T 1.3
- T F 1.3
- F T 1.1
- F F 1.2
—-'>
<* 1.1 *> When Sq And (Approaching_Traffic And
NOT Waiting_Traffic) =>
State := S1;

<* 1.2 *> When S1 And (NOT Approaching_Traffic And
NOT Waiting_Traffic And =>
State := So;

<* 1.3 *> When S1 And (Waiting_Traffic) =>
State := S3;

»

—<
- End S1 Transitions

_'>

3 Handout #2

_<*

- So Transitions
-- Assumptions : Once waiting traffic is detected detection of
- oncoming traffic is irrelevant

- Decision Table:
- Waiting Approaching Expired Satisfied By
- T T T 23
- T F T 23
- F T T 23
- F F T 23
- T T F 24
- T F F 24
- F T F 22
- F F F 2.1
—.>
<* 2.1 *> When Sz And (NOT Approaching_Traffic And

NOT Waiting_Traffic And

NOT Expired(2M_Timer)) =>

State := Sp;

<" 2.2 *> When S» And (NOT Waiting_Traffic And
NOT Expired(2M_Timer) And
Approaching_Traffic)) =>
State := Sp;

<" 2.3 *> When Sz And (Expired(2M_Timer)) =>
State := Sg;

<" 2.4 *> When S2 And (Waiting_Traffic And
NOT Expired(2M_Timer)) =>
State := S3;

_<'

- End Sp Transitions
.-')

4 Handout #2

_<’

- Sg Transitions
- Assumptions : Detecting additional waiting traffic does
- not effect state transition

- Decision Table:
- Approaching Satisfied By
- T 3.1
- F 3.2
—.>
<* 3.1 *> When S3 And (Approaching_Traffic) =>
State := Ss;
<* 3.2 *> When S3 And (NOT Approaching_Traffic) =>
State := S4,
—<’
-~ End Sg3 Transitions
_*>

5 Handout #2

..<'

-- S4 Transitions

- oncoming traffic is irrelevant

-- Decision Table:

- Approaching 158_Timer | 1M Timer Ex

Assumptions : Once waiting traffic is detected detection of

Satisfied By

H
MTAAANT
MAN-An~n<|D
MMM AA~

44
4.4
44
4.4
4.2
4.3
4.2
4.1

- What happens when the oncoming traffic is detected at the

-- exact same time that the timer expires?

—’)

<* 4.1 *> When S4 And (NOT Expired(15S_Timer) And
NOT Expired(1M_Timer) And
NOT Approaching_Traffic)) =>
State := S4;

<* 4.2 *> When S4 And (NOT Expired(1M_Timer) And
Expired(15S_Timer)) =>
State := Sg;

<* 4.3 *> When S4 And (Approaching_Traffic And

NOT Expired(1M_Timer) And
NOT Expired(15S_Timer)) =>
State := Sg;

<* 4.4 *> When S4 And (Expired(1M_Timer)) =>
State := Sg;

—<*

-~ End S4 Transitions

..’>

Handout #2

-

-<

-- Sg Transitions

Assumptions : Physically impossible for the 15S_Timer to
- expire at the same time it is set

-- Decision Table:
- Approaching | 1M Timer Exp | Satisfied By
- T T 5.1
- T F 5.2
-- F T 5.1
- F F 5.3
.—'> .
<*5.1 *> When Sg And (Expired(1M_Timer)) =>
State := Sg;

<* 5.2 *> When Sg And (Approaching_Traffic And
NOT Expired(1M_Timer)) =>
State := Sg;

<* 5.3 *> When Sg And (NOT Approaching_Traffic And
NOT Expired(1M_Timer)) =>
State := S4,

*

-
- End State_5 Transitions

-2

7 Handout #2

Handout #3: First Rule Base
Implementation

NOTE: To aid in understanding the syntax used for the rule-base
that follows, consider the following. Each fact in the
knowledge base is of the form (x) where x is a string of text.
Variables are identified as names preceded by a "?".
Variables are assigned during evaluation of a rule's LHS
condition. This evaluation determines truth by pattern
matching against facts. For example, pattern matching the
expression, (green 2direction), given the existance of the
fact (green NS) would assign the value NS to the variable
?direction.

Initial Facts is
(green NS 0)
(time 1)
(signal NS car 370)
(signal EW car 400)
(signal NS car 420)
(signal EW car 425)
(signal EW car 450)
(signal NS car 460)
(signal NS car 470)
(signal NS car 480)
(signal NS car 490)
(signal NS car 500)
(end 600)

End Initial Facts;

Rule Update_Time With Priority -1 Is
if (time)
Then
Retract (time 7t)
Assert (time 7t + 1)
End Rule;

1 Handout #3

Rule Trigger_Signal_Change Is
If (green ?direction ?) And
(time ?t) And

(signal ?other_direction ? ?t) And

?direction /= ?other_direction
Then
Assert (signal-change ?t))
End Rule;

Rule Del_Old_Changes Is
If (signal-changes ?dt) And
(time ?7t) And
(7t - 72dt) > 120
Then
Retract (signal-changes ?dt)
End Rule;

Rule Trigger_Signal_Delay Is
if (green ?direction ?) And
(time 7t) And
(signal ?direction ?)
Then
Assert (signal-delay)
End Rule;

Rule Del_Old_Delays Is
If (signal-delay ?dt) And
(time ?t) And
(?t-7dt) > 15
Then
Retract (signal-delay ?dt)
End Rule;

Handout #3

Rule Change_No_Signal Is
If (green ?direction ?last_changed)
(time ?t) And
% >= (?last_changed + 120 And
not (signal-delay ?) And
not (signal-change ?)
Then
Retract (green ?direction ?last_changed)
If ?direction = NS
Then ?other_direction = EW
Else ?other_direction = NS
End If;
Assert (green ?other_direction 7t)
Write "green " ?other_direction " (no signal) at * 7t crif
End Rule;

Rule Change_No_Delay Is
If (green ?direction ?last_changed) And
(time 7t) And
(signal-change ?sg) And
not (signal-delay ?) And
N >=7sg+ 15
Then
Retract (green ?direction ?last_changed)
Retract (signal-change ?sg)
If ?direction = NS
Then ?other_direction = EW
Else ?other_direction = NS
End If;
Assert (green ?other_direction ?t)
Write "green " ?other_direction " (no delay) at " ?t crif
End Rule;

3 Handout #3

Rule Change_Delay Is
If (green ?direction ?last_changed) And

(time ?t) And
(signal-change ?sg) And
(signal-delay 7?sd) And
7t >=7sg + 60
Then
Retract (green ?direction ?last_changed)
Retract (signal-change ?sg)
Retract (signal-delay ?sd)
if ?direction = NS
Then ?other_direction = EW
Else ?other_direction = NS
End If;
Assert (green ?other_direction ?7t))
Write "green " ?other_direction " (delay) at " 7t crif
End Rule;

Rule Stoplt Is
If (time 7t) And
(end 2t2) And
N>=7M2
Then
Terminate ES execution
End Rule;

4 Handout #3

[Dd_OId_Chmsea Erisger_Sisml_Delay I

a0

Figure 1: Diagram of Rule Relationships

5 Handout #3

*/

Handout #4: Second Rule Base

Implementation
imulated Solution to Traffic Light Controlier Probl
Probl lving Meth

Time is simulated with a one second timer. This program cycles
once each second. At the beginning of each cycle, certain
definitions are set, then decisions are made about whether or not
to change the traffic lights, and then at the end of each cycle,
certain facts are reset (retracted).

Priorities: -2 : for updating the timer

-1 : for things reset at the end of each cycle

0 : figuring out if the lights need to be changed
TIME module

Update time count at end of each cycle

State Data
Fact Time is (time (is ?t)) Where 7t must be a NUMBER;
Initial Facts Is

(time (is 0))

(stop-time 600)
End Initial Facts;

1 Handout #4

*

*

Transitions

< update time at the end of each cycle >
<'time =time +1*>

Rule Count_Time With Priority -2 Is
if (time (is M))
Then
Retract (time (is ?t)
Assert (time (is ?t+1))
End Rule;

< halt when stop time reached >

Rule Stopilt Is
if (stop-time ?7t) And
(time (is ?t))
Then
Terminate ES execution
End Rule;

Handout #4

Y

TIMER module
Allow timers to be asserted and figure out when they expire.

Usage: Assert a time called some name and set for some time.
When that time has elapsed, the timer will have the
expires_at field set to true.

State Data

Model: Timer is a countdown timer that counts down with time

Fact timer Is (timer (called ?n)
(set_for 2t)
(has_expired 7f)
(expires_at 7e))
Where ?n must be a variable
7t must be a NUMBER
?f must be TRUE or FALSE with a default
of FALSE
?et must be a NUMBER with a default of
99999
End Fact;

Rule Timer_Error Is
If (timer (called 2name) (set_for ?sf)) And
?sf <=0
Then
Write "TIMER_ERROR: " ?name crif
End Rule;

3 Handout #4

*

*/

!

Constraint: only one timer of a given name. This is resolved be
deleting oldest timer.

Rule Timer_Name-Conflict Is
If (timer (called ?name) (expires_at ?ea-1)) And
(timer (called ?name) (expires_at ?ea-2)) And
?0a-1 < 7e0a-2
Then
Retract (timer (called ?name) (expires_at ?ea-1))
End Rule;

Transiti
Initial: expires_at := time + set_for

Bule Initialize_Expires_At Is
If (timer (expires_at 99999) (set_for ?sf)) And
(time (is 7t))
Then
Retract (timer (expires_at 99999))
Assert (timer (expires_at 7sf + 7))
End Rule;

< indicate timer has expired >

Rule Timer_Expired Is
If (timer (expires_at ?ea) (has_expired FALSE)) And

(time (is 7t)) And
7ea<=n
Then
Retract (timer (has_expired TRUE))
Assert (timer (has_expired FALSE))
End Rule;

4 Handout #4

*/

*/

Signal Controller Module

Simulate car and pedestrian arrival sensors.

State Data

Initial Facts Is
(signal_data NS car 370)
(signal_data EW car 400)
(signal_data NS car 420)
(signal_data EW car 425)
(signal_data EW car 450)
(signal_data NS car 460)
(signal_data NS car 470)
(signal_data NS car 480)
(signal_data NS car 490)
(signal_data NS car 500)

End Initial Facts;

Model: Signal_data is a list of signal_names and times where the
time indicates when the signal will be simulated

Fact signal Is (signal (in_direction ?d) (signalled_by ?sb))

Where ?d is either NS or EW
?sb is either car or pedestrian
End Fact;
Constraint: none
Initial: none

Handout #4

*

*

< assert signal >

Rule Assert_Signal Is

If (signal_data ?direction ?type ?time) And

(time (is ?time))
Then

End Rule;

Assert (signal (in_direction ?direction)
(signalled_by ?type))

< retract signal at end of cycle >

Bule Retract_Signal With Priority -1 Is
if (signal (in_direction ?direction) (signalled_by ?type))
Then

End Rule;

Retract (signal (in_direction ?direction)
(signalled_by ?type))

Handout #4

Traffic Light Module

State Data

Initial:
*/

Global Variable ?green-light = NS;
Giobal Variable ?red-light = EW;

Transitions
*f

Procedure change-light () Is
Assert (light-changed)
If 2green-light = NS
Then
?green-light = EW
?red-light = NS
Eilse
?green-light = NS
?red-light = EW
End If;
End Procedure;

/i
;< reset light-changed fact at end of cycle >
i
Rule Retract-Light-Changed With Priority -1 Is
if (light-changed)
Then
Retract (light-changed)
End Rule;

7 Handout #4

*

Traffic Light Controller: Module

Problem Solving Method

QVERVIEW: Each cycle, figure out how long to wait to change
lights, switching the light if it is time to do so.

A collection of timers are used to figure out when to change the
lights. There is a long (2 min.) timer for "no signal” mode, a short
timer (15 sec.) for "signal to change” mode, a medium timer (1
min.) for "signal to change but waiting on a car” mode.

The long timer is set when the light changes or there is a signal in
the same direction.

The short and medium timers are set when there is a signal to
change the light.

The short iimer is resei each iime approaching traffic is deiected
(and are waiting based on a signal to change the light).

The light is changed when any timer expires.
Constants

Global Constant ?long-time = 120;
Global Constant ?medium-time = 60;
Global Constant ?short-time = 15;

8 Handout #4

*/

i

*

Initial

Inital Facts Is
(timer (called long) (set_for ?long-time))
End Initial Facts;

Transition

< light-changed or approaching traffic -> set long timer >

Rule Set-Long-Timer Is
If (light-changed) Or
((signal (in_direction ?direction) And
?direction = ?green-light)
Then
Assert (timer (called long) (set_for ?long-time))
End Rule;

< signal to change the light -> set medium and short timers >

Rule Set-Medium-Timer Is
If (signal (in_direction ?direction)) And
?direction = ?red-light
Then
Assert (timer (called short) (set_for ?short-time))
Assert (timer (called medium) (set_for ?medium-time})
End Rule;

9 Handout #4

< approaching traffic detected and medium timer exists
-> reset short timer >
*f
Rule Reset-Short-Timer Is
If (signal (in_direction ?direction)) And
?direction = ?green-light And
(timer (called medium))
Then
Assert (timer (called short) (set_for ?short-time))
End Rule;

;< timer expires -> change light >
*/
Rule Timer_Expires Is
if (timer (has_expired TRUE)) And
(time (is 7))
Then
Call (change-light)
Write "change light at " 7t " " ?green-light crif
End Rule;

/0
;< light changed -> retract medium and short timers >
*/
Bule Retract-Medium-Timer Is
If (light-changed) And
(timer (called medium)) And
(timer (called short))
Then
Retract (timer (called medium))
Retract (timer (called short))
End Rule;

10 Handout #4

[count_time.

-‘E' ime Explreca Assert__Signal

Set__Long__Timer /

[Set Medium Tlmerj

Reset__Short Tlmea

—>E"mer Expires

Figure 1: Diagram of Rule Relationships

11 Handout #4

Handout #5: Analyzing the Rule Base
Implementations

Introduction

The purpose of this handout is to examine the benefits of applying connectivity graph analysis to the two CLIPS
rule-bases generated for the traffic controller problem. Please refer to Landuaer (reference 21 in the
“Techniques” section of the Presentation Material) for more complete descriptions of this approach. Nazareth
_(reference 41 inthe Techniques” section of the Presentation Material) also provides some of the more theoretical
foundations for similar work in directed graphs (i.e., network fiow). The first step in applying connectivity graphing
techniques is to generate a complete list of rules and facts (this handout will only consider facts; other items such
as clauses could be considered). Tables 1 and 2 show these lists from the first rule-base implementation of the

traffic controller problem.

Tables 3 and 4 show the lists of rules and facts from the s:econd rule-base implementation of the traffic controller
problem. In general, whether building these connectivity graphs or not, generating a list of facts and rules can be
very helpful in avoiding redundancies.

Identifier Rule-Name
Ry Update_Time
R2 Trigger_Signal_Change
Ry Del_Old_Changes
Ra Trigger_Signal_Delay
Rs Del_Old_Delays
Re Change_No_Signal
Ry Change_No_Delay
Re Change_Delay
Rg Stoplt

Table 1: List of Rules from the Non-Modular rule-base implementation

1 Handout #5

Identifier Facts
F1 time 2t
F2 green ?direction ?
F3 signal 7other-direction ? 2t
Fq signal_changes ?dt
Fs signal_change 7t
Fe signal_delay ?dt
F7 end 2t

Table 2: Facts from the non-Modular ruie-base implementation

identifier Rule Names
Ry Count_Time
Rz Stoplt
R3 Timer_Error
Ra Timer_Name_Conflict
Rs Initialize_Expires_At
Re Timer_Expired
Ry Assert_Signal
Rg Retract_Signal
Re Retract_Light_Changed
Rio Set_Long_Timer
R11 Set_Medium_Timer
Ri2 Reset_Short_Timer
Ri3 Timer_Expires
R14 Retract Medium_Timer

Iable 3: List of Rules from Modular rule-base implementation

Handout #5

identifier Facts
F1 time (is 1)
F2 stop_time ?t
F3 timer (called ?) (set_for ?) (has_expired ?)
Fa signal (in_direction ?) (signalled_by ?)
Fs light_changed
Fo signal_data? ? 2

TIable 4: List of Facts from Modular rule-base implementation

Generating Connectivity Graphs

Based on these tables, connectivity matrices can be generated. These matrices are good for examining a
knowledge base to see how ~nterrelated” things are. Tables 5 and 6 show connectivity matrices derived from the
fact and rule lists. These matrices are built by placing a 1 in each slot where a given fact is used on either the
right or left hand side of the rule. A 0in a given slot indicates that a particular rule does not reference the related

fact. The equations of interest for tables 5 and 6 are:
- (RFTR) * (RF)
- (RF) * (RFTR)
where (RF) is the initial Rule\Fact matrix and (RFTR) is the transpose of that matrix (i.e.,

creating a matrix by making the rows into columns and vice versa)

The first equation shown generates a matrix that shows, given an ordered pair of facts (f;. fj), whether a particular
rule references both facts f; and tj (i.e., facts f; and fj have commonality). A graph can be generated based on

this matrix where facts serve as the vertices of the graph and rules serve as the edges that connect these The
second equation generates a similar matrix that shows, given any ordered pair of rules, (e rp, whether a

particular tact is common to rules rj and T An undirected graph can aiso be generated from this matrix where the
rules serve as vertices and the facts as edges.

Analyzing Connectivity Graphs

What can be learned about the two implementations of the traffic controlier problem from these matrices? As it
turns out, these matrices provide some important clues that can be used to assess the design of the two different

3 Handout #5

implementations. To see these clues begin by considering the matrix generated from the non-modular rule-base
implementation (see Table 7). As stated earlier, an undirected graph can be drawn based on the generated
matrix where rules act as the vertices. Drawing a graph from the matrix in Table 7 generates, as expected, a
very complex series of interactions. In fact, there is at least one edge between every rule and every other rule.
This means that every rule has one or more facts in common with all other rules. Clearly, this would be a more
ditficult rule-base to analyze because of all these interactions.

What can be leamed using the matrix generated from the modular rule-base implementation? The matrix should
show that this implementation is easier to analyze. In fact, the matrix of Table 8 clearly shows a simpler
connectivity structure as evidenced by the number of zeroes in the matrix (i.e., there are fewer edges in the
graph). In addition, the matrix of Table 8 highlights the modules defined in the design (i.e., areas where higher
numbers are clustered; e.g., the boxes in the inner portion of the matrix in Table 8). To prove this, compare the
matrix of Table & to the modular rule-base design found in handout number five.

An interesting side-benefit to this is that, for the modular approach, one can assess, using the matrix of Table 8,
the amount of coupling and cohesion that exists for each module. Every module should be strongty cohesive
(i.e., the module is completely defined without any extraneous data or operations) and very loosely coupled (i.e.,
each module should have few, if any, dependencies on other modules) In the case of Table 8 one could make
the arguement, for example, that the signal and timer modules should be combined to form one module due to
the indications of coupling found in the middle box of Table 8. The loose coupling is evident by examining areas
of the matrix in Table 8 that are not highlighted. The frequency of zeroes indicates that little or no coupling

between modules exists.

4 Handout #5

Rules \ Facts

Jable o:

Rules \ Facts

wd

- 0 0 © o o

0

wud

0
0
0
0
0
0
0
0
0
0
0

0

1
1

- 0 O ©o o o o

- e O

0
0

Connectivity Matrix for the Modular rule-base
implementation

o 6 0 o6 o o o o

[S Y

o O o

- 0 & © 0o o o

© 0 o © 0o 0o o

-
-5

Table 6:

Connectivity Matrix for non-modular rule-base

implementation

1
1

- O -

(=

1
1
0

-l

o © © 0o o o

0

P

o © 0o o o

o © o o

= S

o O 0o © © O o o

-h

Handout #5

Rules \ Rules Ry R, Ryg Ry Rs Rg Ry Rg Ry
R 1 1+ 1+ 1 1 1 1 1 1
Rl 1+ 4 1 2 1 3 3 3 1
R3] 1+ 1 2 2 1 1 1 1 1
Rgl 1 2 2 3 1 2 2 2 1
Rs| 1 1 1 1 2 2 2 2 1
Rel 1+ 3 1 2 2 4 4 4 1
Rl 1+ 3 1 2 2 4 4 4 1
Rg|] 1+ 3 1 2 2 4 4 4 1
Rgl 1+ 1+ 1 1 1 1 1 1 2
Iable7: Connectivity Mapping between Rules (RF * RFTR) for the non-
modular rule-base implementation
Rules/Rules | Ry Ry Rz Ry Rs Rg Ry Rg Rg PRy Pny Ry2 Ry3 Ry
Rq + 1l0 o 1+ 1+ 1 o o o o 0o 1 0
R2 1 2/l0 o 2 1+ 1 o o o o 0o 1 0
R3 o o 1 1 1 1 o o o 1 1 1 1 1
Rq o o 1 1 1 1 _o0o o o 1 1t 1 1 1
Rg 1 1+ 1 1)l2 2 1o o 1 t 1 2 1
Rg 1 1 1 1}l2 2 1]lo o 1+ 1 v 2 1
Ry 1 1+ o o}l1+ 1 31 o 1 1 1 1 0
Rg o o o o 6 o 1 1 o 1 1 1 0 O
Rg o o o o o o o o 1 1 o0 0 0 1
R o o 1 1 1 1 1 1 113 2 2 1 2
R11 o o 1 1 1 1t 1 1 o}2 2 2 1 1
R12 6o o 1 1 1 1 1 1 o0o]2 2 2 1 1
Ri3 1 1 1 1 2 2 1 o o}l11 1+ 1 2 1
Ria o o 1 1 1 1 o o 1|2 1 1 1 2
Table 8: Connectivity Mapping between Rules (RF * RFTH) for the Modular rule-base
implementation

6 Handout #5

Generating Read/Write Matrices

Additional graph techniques exist for analyzing correctness criteria in a rule-base. One of these techniques works
with matrices generated by examining the read/write relationships between facts and rules.This particular
technique will be explored from the perspective of reachability (i.e., "can | get there from here?"). For example,
Tables 9 and 10 show matrices that map rules to facts based on whether the fact appears on the right or left hand
side of the rule for the non-modular rule-base implementation. Tables 11 and 12 show the analagous matrices for
the modular rule-base implementation. Each of these matrices are built following a similar technique to the other
connectivity matrices. A1is placed in each slot where a rule and fact are "connected.” Zeroes indicate that
there is no relationship between a given fact and rule.

Once these matrices have been built, two different equations can be used to analyze "reachability” issues within
the knowledge base. The first equation below generates a matrix that matches facts against other facts (see
Tables 13 and 19). The second equation matches rules against other rules (see Tables 14 and 20).

- (RATR) * (Wr)
- (Wr) * (RATR)

where (Rd) is the initial Rule\Fact read matrix and (RATR) is the transpose of that matrix

Identi_fying Anamolies

Tables 13 and 19 show the fact to fact connectivity relationships for the non-modular and modular rule-base
implementations respectively. What useful information does this matrix provide? These matrices indicate, for a
given order pair of facts (f;and fj), whether a rule exists that reads f; and writes fj. Following this line of reasoning

for the ad-hoc implementation, some anomalies in the rule-base are apparent. Anamolies, remember, do not
necessarily indicate an error exists, but rather indicate that the possibility for an error exists. For example,
consider the first column of the matrix. This column indicates that one rule reads f1 and writes f4, but no other

rules write f4. Isthisa problem? Looking at the rule-base this can be explained. The rule Update_Time (this is
the rule that both reads and writes fact {1) is intended to update the time at the end of each cycle in order to

simulate a clock. A salience value was added to the rule (i.e., this rule will not fire until a state is reached where
no other rules at a higher salience can fire) to guarantee, among other things, that this rule is the only rule than
can update the time (i.e., fact t4). Therefore, this is not a problem.

Are there any other anamolies? Yes. Look at column three of the matrix in Table 13. The column contains all
zeroes. This indicates that no rules write fact 5 (this is also seen in the write matrix of Table 10). Yet, Table 9

indicates there are rules that read fact f3. This is clearly an anomaly. Once again, though, this is not an error.
As it turns out, all variations of fact {3 have been defined within a deffacts structure (see page 1 of Handout #2).
A similar line of reasoning can be used to explain the anomaly that the last column of the matrix (fact {7) is aiso
all zeroes.

What about the matrix for the modular implementation? Does this provide any useful information? There are two
columns in this matrix that contain all zeroes. The column for fact f can be explained using the line of reasoning

7 Handout #5

from the previous paragraph. A deffact structure was used to do the write for fact fo. The purpose of the rule
that reads fo (which is rule Rp) is to terminate the rule-base. Therefore, should rule Ry fire, the knowledge base

terminates and no more "writes” are performed. The same arguements follow for fact f6 which also has all
zeroes in its column. One process, then, for demonstrating correctness using these matrices is to look for
anomalies and then provide arguements that these, in fact, are correct.

Anomalies also exist in the matrices of Tables 14 and 20. These matrices show rules that are related because
they read and write the same facts. For example, the rules R4 and R5 are connected because they each read

and write the fact fg. One of the most curious anomalies in the matrix of Table 14 relates directly to the error
discovered in Handout #3. Examine the row and column for rule R3. Rule Rg (Del_OKd_Changes) is connected
with itself, but is not connected via facts to any other rule. This indicates two things. First, R3 is a dead-end rule.
In other words, rule R does not influence the firing of any other rules. Second, Rg will, in fact, never fire
because there are no other rules that write fact f4. This is also evident in the inital read and write matrices, but is
probably easier to analyze using one matrix than by trying to visually combine the results of two matrices.

Testing Reachability

Nazareth points out that for a connectivity matrix A, the equation AN will generate a matrix showing whether a
given rule, for example, can be reached from another rule across n edges (based on a graph that can be
generated based on the connectivity matrix) of a directed graph. Using the matrices generated so far, the
definition would look something like this:

Ajj=1{1iff rule;-> rule;}

This equation states that the matrix A will contain a 1 whenever the result of firing rule; influences the firing of rule;
to fire. The matrix generated from A2 , then, can be defined as follows:

Ajk = {1 itf rule; -> rulej -> ruley}

This definition can be carried forward to show elements of reachability (i.e., can a given rule be influenced by
another rule). In the framework of the matrices worked with in these examples, this connectivity is done. when
working with rules, by facts. In other words, a given rule "writes” a tact and that influences the firing of other rules
that also change facts that influence other rules and so on. Following Nazareth's approach generates a narrow
result that allows one to focus on specific rules. For the examples here a more general reachability result was
desired. To achieve this more general result, the following equation was used:

A+A2 4+ A3 4 . 4+ AN

This equation adds all of the A" matrices (each value greater than 0 was converted to one since the concem was
to show whether or not a rule was reachable from another rule not necessarily how many edges in a graph were
required to achieve that reachabiiity). Tables 15 through 18 show the results of applying this equation to the non-
modular rule-base implementation. Tables 15, 16 and 17 show successive implementations while Table 19

shows the cumulative results of applying this equation to AS. Tables 21 through 24 show the results as appiied to
the modular rule-base implementation. Tables 21, 22, and 23 show successive approximations while Table 24

8 Handout #5

shows the result up to AS. The examples stopped at A5 because the matrices generated following that up to Al4
were all identical to AS.

The primary result from applying this approach is that the anomalies mentioned earlier become more
pronounced.These results become more pronounced because as the equation is carried out more slots become
filled with one's until at some point the matrices begin to repeat. For the example, the row for R3 never changes

because as was already discovered this rule has essentially no bearing on the rest of the rule-base. The anomaly
associated with rule Ry also is still apparent because its column remained the same throughout.

The results of this equation when applied to the modular approach also provide interesting results. These results
can be summarized by recognizing that there are fewer anomalies to consider for the modular case than for the
ad-hoc case. This certainly supports the notion that designing modular knowledge bases results in easier
analysis. While it is a positive thing that techniques such as these find anomalies, is it not better to design a
system so that anomaiies are avoided? Designing a system in this matter reduces the analysis of these matrices
to confirmation that the system will perform as designed.

Landauer presents formulas for building other interesting matrices that can be used to analyze a rule-base.
Nazareth also points to some interesting resutts that can be obtained by representing a rule-base as a directed
graph and then applying elements of graph theory to do network flow analysis. These other techniques will not be
considered here. However, the student is encouraged to examine these other techniques because of similar
benefits they provide in analyzing a rule-base.

Rules \ Facts Fq Fap F3 Fa Fs Fg Fr
Ry| 1 0 0 0 0 0 0
Ra| 1 1 1 0 1 0 0
R3| 1 0 () 1 0 0 0
Re| 1 1 0 1 0 0 0
Rs| 1 0 0 0 ()} 1 0
Re| 1 1 o 0 1 1 0
Rzl 1 1 0 0 1 1 ()
Rg| 1 1 0 0 1 1 0
Rg| 1 0 0 (0 0 1
Table 9: Read Matrix for non-modular rule-base implementation

9 Handout #5

Rules \ Facts

Write Matrix for non-modular rule-base implementation

Jable 10:

Fq

Rules \ Facts

R4

Table 11: Read matrix for Modular rule-base implementation

Handout #5

10

Rules \ Facts Fq Fo F3 Fa Fsg Fg
Ri| 1 0 0 0 0 0
Ra|l o 0 0 0 0 0
R3| o 0 0 0 0 0
Ra| o 0 1 0 0 0
Rs| o 0 1 0 0 0
Re| o 0 1 0 0 0
R7l o 0 0 1 0 0
Rg| o 0 0 1 0 0
Ro|l o 0 0 0 1 0

Rio| o 0 1 0 0 0
Ri1| o 0 1 0 0 0
Ri2| o o 1 0 0 0
Rial o 0 0 0 0 0
Ria]l o 0 1 0 0 0

Table 12: Write Matrix for Modular rule-base implementation

Facts \ Facts Fy Fp F3 F4 F5 Fg Fy
F4/ 1+ 3 o 1 3 3 ©
F2l o 3 o o 3 2 0
F3] o o o o 1 1 O
Fal o o o 1 o o0 O
Fs| o 3 o o 2 1 0
Fsg|l o 3 o o 2 2 0
F7] o o o o o 0 O

Jable 13:

Connectivity Mapping between Facts (Rdm * Wr) for the non-
modular rule-base implementation

11

Handout #5

Rules \ Rules Ry Rp Rg Ry Rs Rg Ry Rg Rg
R{] + + 1 1+ 1 1 1 1 1
Rl o o o o o 1t 1 1 0
R3 o o 1 o o 0 o0 O O
Rl o o o o 1t 1 1 1 O
Rs| o o o o 1 1 1 1 o0
Rl o 1+ o 1+ o 1 1 1 O
Rzl o 1 o 1 0 2 2 2 O©
Rgl o 1+ o 1+ 1+ 3 3 3 0
Rgl o o .0 o o 0 O O O

Iable 14: Connectivity Mapping between Rules (Wr * RdTR) for the non-modular
rule-base implementation

Rules \ Rules Ry Rp Ry Ry Rs Rg Ry Rg Rg
Rq] 1+ 1+ 1+ 1 1 1 1 1 1
Rl ¢ 1 o 1 1 1 1 1 0
R3l ¢ o 1 o o 0o 0 O O
Rgl o 1 o 1 1 1 1 1 0O
Rs] o 1 o 1 1 1 1 1 0
Rel] o 1 o 1 1 1 1 1 0
Rzl o + o 1 1 1 1 1 0
Re|l o 1 o 1 1 1 1 1 O
Rl o o o o o 0 o0 o0 O

Table 15: Reachability Matrix (Rules\Rules) Step 2 (A+A2)

12

Handout #5

Rules \ Rules Ry R, Ry Ry Rs Rg Ry Rg Rg
Rl + 1 1+ 1 1+ 1 1 1 1
Rl o 1+ o 1 1 1 1 1 0
Rl o o 1 o o o o ©O0 O
Rl o 1+ o 1 1 t 1 1 0
Rs| ¢ 1 o + 1 1t 1 1 0
Rg|l o 1 o 1 1 1 1 1 0
Rzl o 1+ o 1 1 t 1 1 0
Rgl ¢ 1 o 1 1+ 1 1 1 0
Rgl o o o o o o o 0 O
Table 16: Reachability Matrix (Rules\Rules) Step 3 (A+A2+A3)
Rules \ Rules Ry Rp R3 Ry Rs Rg Ry Rg Rg
R« 1+ + 1+ 1 1t 1 1t 1 1
Rl o 1+ o 1 1 1 1 1 0
Rs3l o o 1 o o o o o0 O
Rgl o 1+ o 1 1 1 1 1 0
Rs|] o + o 1+ 1 1 1 1 0
Rgl] o6 1+ o 1 1 1 1 .1 0
Rzl ¢ 1+ o 1 1 1 1 1 0
Rgl o 14 o 1 1 1 1 1 0O
Rl o o o o o o o0 O O
Table 17: Reachability Matrix (Rules\Rules) Step 4 (A+A2+A3+A%)
13 Handout #5

Rules \ Rules R, R, Ry R, R, R, R, Ry Ry

Ri] 1+ 1 1 1 1 1 1 1 1

R2l o 1 o 1 1t 1 1 1 0

R3] o o 1 0 o o0 0 O O

Rgl o 1 o 1 1 1 1 1 0

Rs| o 1 o 1 1 1 1 1 0

Rel o 1+ o 1 1 1 1 1 0

Rzf o 1 o0 1 1 1 1 1 0

Rgf o 1+ o 1 1 1 1 1 0

Rg] o o o o o 0o o0 o0 O

Iable 18: Reachability Matrix (Rules\Rules) Step 9 (A+A2+ .. +A9)
Facts \ Facts F{ Fp F3 F4 Fs Fg
Fil 2 o 2 1 1 o
F2l o o o o o o
F3 1 ¢ 5 0o 1 o
Falo o 3 1 o0 o
Fs{ o o 2 o 1 o
Fsl o o o 1 o o
Iable 19: Connectivity Mapping between Facts (RdTH * Wr)

for the Modular rule-base impiementation

14

Handout #5

Rules \ Rules Ry R, Rg Ry Rs Rg Ry Rg Rg Rio Ryy Ri2 Ri3 Ria
Ry 1 1+ o 0 1 1 1 o o o o o0 1 0
Rl o o o o o o o o o o 0 O o O
Rl o o o o o o o o ¢ o0 o0 0 O 0
Rl o o 1 1 1 1 o o o 0o o0 1 1 1
Rgl 1+ 1 1 1+ 2 2 1 o o o o0 1 2 1
Rel o o 1 1+ 1 1 o o o o o0 1 1 1
Rzl o o o o o o o 1 o 1 1 1 0 0
Rel o o o o o o o 1 0o 1 1 1 0 0
Rel] o o o o o o o o 1 1 o o0 0 1
Rl o o 1+ 1+ 1+ 1 o o o o o0 1 1 1
Ryl o o 1 1+ 1 1 o o o o 0o 1 1 1
Rl o o 1 1 1 1 o o o o0 0 1 1 1
Ral o o o o o o o o 1 1 0 0 0 1
R4l ¢ o 1 1 1+ 1+ o o o o o 1 1 1
Jable 20: Connectivity Mapping between Rules (Wr * RdTR) for the Modular rule-base
implementation

15 Handout #5

R, R3 Ry Rg Rg Ry Rg Rg Ryg Ry1 Ryp Ry3 Ryg

R4

Rules \ Rules

Ri1
Ri2
R3
Rig

Reachability Matrix (Rules\Rules) Step 2 (A+A2)

Jable 21:

Handout #5

16

Rules \ Rules Ry R, Ry Ry Rg Rg Ry Rg Rg Rio Ry Ry2 Ry3 Ria
Rl 1+ 1 1 1 1 1 1 1 1 1 1 1 1 1
Rl o o o o o o o o o o0 o0 0 0 O
Rsl o o o o o o o o o o o0 0 0 O
Rgl o 1 1+ 1+ 1+ 1 1 o 1 1 0o 1 1 1
Rs| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rg| o 1 1 1+ 1+ 1t 1 o 1 1 0 1 1 1
Rl o o 1+ t+ 1 1 o 1 0o 1 1 1 1 1
Rg| o ¢ 1 1 1+ 1 o 1 0o 1 1 1 1 1
Rgl o o 1 1+ 1 1 o o 1 1 0 1 1 1
Rol ¢ 1 1+ 1+ 1+ 1 1 o 1 1 0o 1 1 1
R o 1+ 1+ 1 1 1 1 o 1 1 0o 1 1 1
Rzl o 1+ 1+ 1+ 1 1t 1 o 1 1 0 1 1 1
Ral ¢ o 1 1+ 1 1 o o 1 1 o 1 1 1
Rgl o 1 1+ 1+ 1t 1 1 o 1 1 o 1 1 1

Table 22: Reachability Matrix (Rules\Rules) Step 3 (A+A2+A3)

17 Handout #5

Rules \ Rules Ri Ro R3 Ry Rs Rg Ry Rg Rg Ryg Ry1 Ry2 Ry3 Ryg

o O
0 O =

1
0
0

&
Qo o
o o
o O
o O
- O O
o o
o O
o o
o O
0 O
o o

R ¢ *+ 1+ 1 1 1 1 1 1 1 1 1 1 1
Rgl 1+ 1 1 + 1 1 1 1 1 1 1 1 1 1

Tabie 23: Reachability Matrix (Rules\Rules) Step 4 (A+A2+A3+A%)

18 Handout #5

Rules \ Rules Ry R, Ry Ry Rs Rg Ry Rg Rg Ry Ry Pi2 Ry3 Ria
Ry 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rl o o o o o o o o o o o0 0 0 O
Rsl o o o o o o o o o o 0o o 0 O

Ral 1+ 1 1+ 1 1+ 1 1 1t 1 1 1 1 1 1
Ral 1 1 1 1 1 1 1t 1 1 1 1t 1 1 1

Table 24: Reachability Matrix (Rules\Rules) Step 5 (A+AZ+ ... +A5)

19 Handout #5

Handout #6: Formal and Informal Proofs of
Correctness

Introduction

It is important to argue the correctness of programs. Clearly, this is much easier when program
specifications exist. One formal technique for analyzing a piece of software to determine if
program specifications have been implemented correctly is called Symbolic Execution. There are
three steps to doing symbolic execution. The first step, which is really a design step, defines
specifications about program behavior. The next step graphs the program’s flow of control (or
execution). This graph is the framework for "tracing” a program's execution against its
specifications. The last step traces execution of the program using symbols' to formally prove
satisfaction of program specifications defined in the first step of this technique. This handout will
demonstrate both a formal (based on symbolic execution) and informal proof of correctness style.

Formal "Proof of Correctness" Using Symbolic
Execution

This section will outiine the application of the three steps of the Symbolic Execution technique to
the procedure, called Process_Signal, shown in figure 1. Process_Signal determines when the
traffic light should change the flow of traffic after waiting traffic has been detected. Three
variables are used to accomplish this task. These are:

. tc : the current time
. tg : the time to switch
. 1 : the maximum time traffic must wait betore a light change

A function, called Approaching_Signal, is used to indicate whether traffic is detected in the current
direction of traffic flow (i.e., returns the vaiue TRUE when traffic is detected). For this demonstration one
can assume that the function Approaching_Signal works correctly (i.e., there will be no additional proof of
the correctness of this function).

1Symbols represent a "class” of values that a variable in the software may assume. This eases the trace
of execution by eliminating the need to focus on specific data values.

1 Handout #6

Procedure Process_Signal Is
1 fi=1.+60
2 tg=t.+15
3 while t; < tg loop
4 ~<"to<fandt; <tgandig <=t ">
5 it approaching_.signal then
6 if to + 15 <t then
tg =t + 15
7 else
ts =4
8 end i
9 end if
10 ~<" to<tgandtg <=1t ">
11 te =t +1
12 end loop
13 <" te=tgandtg <=t} *>
End Process_Signal

Figure 1. The procedure Process_Signal

Step 1: Defining Specifications

As stated earlier, the objective of symbolic execution is to demonstrate that program specifications are
correct. Line 4, 11, and 14 of figure 1 show the specifications that are to be proved correct for the
procedure Process_Signal. The specifications shown are special kinds of specifications known as pre
and post conditions. Pre-conditions appear define the required "state” of the program prior to executing a
given program fragment. Post-conditions define the required "state” of the program when that specific
program fragment completes execution. For example, Line 4 is a pre-condition for the If-then-else of line
5 and line 11 is the post-condition for that same if-then-else. Symbolic execution works best when using
pre and post condition specifications.

Symbolic execution will prove that each of these pre and post conditions are satisfied by tracing the
execution of the procedure Process_Signal. Based on the steps of the technique described earlier, step
one is complete. These conditions are drawn directly from the statement of the problem. The desire is
to, once watting traffic has been identified, find the time when the light must change (when t, = tg). This
time is determined by the amount of traffic in the direction of traffic flow. Regardless of this traffic flow,
the light must change within at least one minute (t)).

2 Handout #6

Step 2: Building a Graph

The second step is to generate graphs that allow for tracing procedure execution. There are two
scenarios to consider when graphing the execution of a procedure. The first scenario involves
procedures that have no loops (i.e., the graph shows be a single path of finite length). These are the
simplest to trace and are done by examining each statement in sequence from beginning to end. The
other scenario involves procedures that do have loops (i.e., the graph has an infinte number of paths with
infinite lengths). For these scenarios, the infinite graph describing the loop can be analyzed as though it
were finite by using mathematical induction?. '

Graph assuming no loop iterations Graph with loop iterations

1 (l@

g
g
)

Figure 2: Trace graphs for Process_Signal

Often times, whether there are loops or not, the graphs can become unwieldy. The best way to handle
this is to break the graph into many smaller graphs {(or "cuts”). The procedure can be shown to be
correct by demonstrating each smaller graph is correct. This is a good technique for procedures with
loops. For example, one might to prove the procedure works when (1) the loop never iterates and (2) the
loop iterates one or more times. Figure 2 show this kind of separation for the procedure Process_Signal.
It is worth noting that breaking a large graph into smaller ones can be difficutt control structures are

2Induction for these cases involves demonstrating that if the loop executes correctly on the kth iteration
then it executes correctly on the k+11M iteration.

3 Handout #6

missing pre and post conditions. These conditions form natural boundaries that allow easier separation
of a large graph into many small ones. For example, the pre-condition at line 4 of Figure 1 allows for a
clean "cut” of a large graph (not pictured) into the two smaller graphs shown in figure 2.

Step 3: Tracing Program Execution

Now consider the final step of the symbolic execution technique. Each graph is traced using
mathematical symbols to determine whether pre/post conditions are satisfied. It is worth noting that this
technique is also very good at identifying things that are missing from a pre/post condition. In other
words, the combination of a pre-condition and the trace may not provide enough information to prove that
the post condition holds. Using the graphs from figure 2, begin with the simplest graph (i.e., the graph
that assumes no loop iterations). Even though edge 3a depicts a condition where no iterations of the
loop occur, by examination of lines 1 and 2 it is clear that under no circumstances will the loop at line 3
not iterate. For this reason this leg of the graph can be ignored (i.e., not traced). The edge 3b depicts
the case where the loop will iterate any multiple of times. Proving this is simply the case of tracing lines
1,2, and 3 and then showing that the resulting values match the pre-condition shown at line 4. This step
gets repeated as a part of tracing the more complicated graph, so specific trace results will be left to

discussion of that graph.

The second. more complicated graph from figure 2 describes the true actions of the procedure
Process_Signal. A simple way to trace the procedure is to build a matrix with a column for each value
being traced. This eases the analysis burden by allowing the analyst to easily find which symbols map to
which variables. The matrix of figure 3 shows the results of tracing the iteration graph of figure 2.

Initially, the symbol B represents values for the variable t.,. the symbol p represents values for the
variable tg, and the symbol o represents values for the variable t|. These symbols, then, replace

occurrences of these variables in the proof arguments that follow. The results of tracing lines 1 and 2
demonstrate this. For example, after executing line 1 the value of t}, which initially is @, is now 8+60

(replacing t; with @ and t; with B in the equation t) := 1 + 60). A similar result is attained after executing

line 2 by following the same replacement strategy. The next line in the trace is line 4. Line 4 is a pre-
condition statement. Theretfore, the pre-condition must be shown, using the symbols, to be satisfied. To
do this, t; < tg and t; < tjand tg <= t) must be shown to be true. By substituting the symbol values for the

variables, these expressions become B<B+15 and 8<8+60 and B+15<=8+60. These are all obviously
true. A less formal arguement wouid contend that (1) the while-loop condition guarantees that t;, < tg at

line 4, (2) since the value of t) never changes and tq is never assigned a value larger than t, inside the
loop then tg <=tjand t; < t}.

4 Handout #6

Lines tc: 8 t:o ts:p Arguements

1 B+60
2 B+15
4 Prove: to <tjandtg <=tland ts <tg
TRUE : substitution of values for t, and tg
yields the following:
B+15 <= B+60 and B < B+60 and B < B+15
5b Approaching_Signal is FALSE
1 Em: ts<=t|andtc<ts
TRUE : values for these variables have not
changed since line 4 therefore, the same
arguements apply
12 8+1
3b tc >= ts
3a te<tg
15 Prove: tg=tgandtg <=1
TRUE ; if, after substituting symbols,8 < p
(line 11) and B+1 >= p (line 3b) then B=y
Also, since p <= @ at line 11 and the values p
and @ have not changed, then tg <= t; still
holds
4 Prove: to<tgandts <tjandtg <=1

TRUE : t < tg holds from line 3a
ts <= t| holds since values for tg and t) have
not changed since line 11

Since tg <= t) and t < tg are both true then t¢
<t

Figure 3: Results of tracing the iteration graph from figure 2

Continuing with the trace, consider line 5. Line 5 is an If-then-else test on the condition that the function
Approaching_Signal has detected traffic in the current direction of traffic flow. For simplicity, the trace of
figure 3 follows the path that results from detecting no oncoming traffic (i.e., Approaching_Signal =
FALSE). Tracing the opposite path (following edge 5b) will be left as an exercise for the reader. The

5 Handout #6

next line to consider along the chosen path is line 11. Line 11 is the post-condition after execution of the
It-then-else of line 5. Therefore, the properties t < tg and tg <= t; must be shown to be true. By

examining the matrix of figure 3 it is evident that the values for t, ts, and t| have not changed since line
4. The proof for line 4 showed that t. < tg and tg <= t}. Therefore, these must still be true at line 11.

Line 12 is an assignment statement. Therefore, the original value, 8, for tc is now changed to B+1. This
is the last statement of the loop. From there the loop either iterates again (edge 3b) or exits the loop
(edge 3a). Consider the case where the loop will iterate again. For this case, the properties of the line 4
must be shown to still hold true given new values calculated inside the loop (this is the induction step).
The proof is straightforward. As in the first consideration of line 4, t¢ < tg is true because of the condition
on the while-loop. Since the values for ts and tl have not changed since line 11 when tg <=t} was shown
to be true, tg <=) must still be true. Given the truth of these condtions, the expression {¢ < t) must also

be true. Therefore, line 4 holds for iteration.

Now consider the case when the loop does not iterate again. For this case the post-condition of line 14,
tc = tg and tg <- j, must be true. Once again, this is fairly simple. Given the condition of the while-loop
required to prevent iteration of the loop, the condition t; >= tg must be true. The trace at line 11 indicates
that (using the symbols) 8 < p. Line 14 indicates, once again by substituting symbols for variables, that
B+1 >= p. For these conditions to both be true, B = at line 14. The other condition, tg <= tj, must be
true because the same condition was true at line 11 and the values for tg and t| have not changed.

Informal "Proof of Correctness"

This concludes a formal (partial) proof of the procedure Process_Signal. It is reasonable to argue
that this formalism can be difficult to carry out when the program is very large. Yet, the essence of
the formalism can be captured as an informal proof that is also correct. Informal proof of correctness
seeks to informally argue the correctness of each program specification. For example, consider the
informal proof of correctness for line 14.

Initially t, < tg and t < tj and tg <t} (by lines 1 and 2). Based on the internals of the loop, t¢ is

incremented with each iteration of the loop. Therefore, the proof for line 14 must demonstrate
that there is an upper bound for t; which is tg. This also means there must be an upper bound

for tg since its value also increases inside the loop (i.e., if there is no upper bound for tg, then t.
can not have an upper bound that is tg). Lines 7 and 8 are the only places where the value of
tg is changed. Based on the condition of line 6 it is clear that tg can never exceed t; (which is
constant throughout the loop). Therefore tg has an upper bound and is guaranteed to
eventually reach that upper bound. Therefore, t; is guaranteed to reach an upper bound based
on increments of 1 inside the loop. This means that when the upper bound of ts is reached, tg

=t (since ts and tc are integers).

Figure 4: Informal arguement for the correctness of Process_Signal

6 Handout #6

The proof shown is as correct as the proof generated by Symbolic Execution. However, the informal
proof of figure 4 is probably simpler to read and is certainly simpler to generate. The conclusion, then, is
that the procedure Process_Signal was simple enough that doing an informal proof was probably the
better, more efficient choice for proving correctness. However, following a formal approach is very good
when dealing with complicated parts of programs that depend on the rigor of a formal method for
ensuring important details are not overiooked.

7 Handout #6

1.

Handout #7: Exercises on General Techniques

Define the "black box" view for your system.

1 Handout #7

2.

3.

Identify key terms from the problem description.

Which of the following techniques would you use? Explain your answer.

. Prototyping

. Competing Designs
. independent V&V

. Inspections

2 Handout #7

4. Do a very high level specification for your system using one of the following
techniques:

. Decision Table
. Cause-Effect Graph
. State Diagram

3 Handout #7

1.

2.

Handout #8: Exercises on System Test
Techniques

Define 1 or more "realistic” test cases for your team exercise.

Define some attributes of your system. Define 1 or more test cases based on
those attributes.

1 Handout #8

3.

Define 1 or more test cases that do "boundary value" testing.

Define 1 or more test cases that "stress” test the system.

2 Handout #8

5. Define the external interfaces to your system. Define 1 or more test cases to
test those interfaces.

6. Define 1 or more test cases to test the system’s performance.

3 Handout #8

7.

8.

For each question, indicate how the results of each test case will be analyzed
(i.e., how you will know the answer is correct).

Did the problem description provide enough detail to adequately perform the
tests from questions 1-6?

4 Handout #8

9. Develop a "certification” test for your system.

10. Identify system "disasters" (i.e., things that should not happen). Explain how you
will test your system for these “disasters”.

5 Handout #8

11.

12.

Will your project need the aid of an expert (provide rationale)? If so, indicate the
kind of expert required and the type of analysis to be performed.

Define 1 or more models to aid in your understanding of the system. Document
each model.

6 Handout #8

Handout #9: Exercises on Unit/Integration Test
Techniques

1. Pick an implementation approach for your problem. Based on this choice, would
you use:

. Coverage techniques

. Interprocedural data-flow analysis

2. Identify "part” of the system that may impact reliability (HINT: you may have to
define what reliability is). Define 1 or more test cases to test those "parts”.

1 Handout #9

3. Document 1 or more expected sequences of actions for your system.

4, Is "prototype evaluation” appropriate for your problem? What about mutation
testing? Provide rationale.

2 Handout #9

5. Exchange your work with another team. Study the problem. Ask yourself the

following:

. Does their implementation match the problem?

. Are there any "holes" or inconsistencies in their descriptions?

. Did they pick the right techniques for their implementation approach?

3 Handout #9

Handout #10: Exercises on Static Test
Techniques

1. Identify and define at least 1 "object” in your system (remember, objects consist
of both data and operations on that data).

1 Handout #10

2. Wirite a pre-condition and a post-condition for each operation on the object.

2 Handout #10

3. Describe any general properties your "object” must satisfy. Discuss how you
would analyze your "object™s implementation to "prove” those properties are

always satisfied.

4. Pick at least one operation and defined some rules that implement its
specificiation.

3 Handout #10

Select one of the following techniques for analyzing these rules. Explain your
answer.

. Petri Nets
. Directed Graphs
. Connectivity Matrices

Identify 1 "hazard" in your system. Build a fault tree for that "hazard".

4 Handout #10

7. Idenfity 1 “fault” in your system. Build a fault tree for that "fault”.

5 Handout #10

1.

2.

Handout #11: Exercises on Guidelines

Determine whether the recommended approach fits your problem. identify
additional issues that need to be considered.

Generate a detailed development plan for your problem. Try to include specific
milestones and how they will be achieved.

1 Handout #11

3. Define specific development increments. Update your plan to reflect those
increments.

4, Consider the test cases you have selected so far. Are there any other kinds of
testing you need to do? When will you know when to stop testing?

2 Handout #11

5. Build a high-level requirements outline for your system. How well does the
original problem definition map to your outline?

3 Handout #11

Handout #12: Alarm 1201!: A History Lesson in
Some Important Aspects of Verification and
Validation

Introduction

On July 20, 1969, Astronauts Neil Armstrong and Buzz Aldrin were preparing their spacecratt for the
programmed descent toward the first landing on the moon. Armmstrong gave a command to the guidance
computer, instructing it to switch to descent mode. A few minutes later, he fired the descent engine. As
they descended behind the moon, Aldrin gave another command which was due to a last minute change
in the crew procedure; he instructed the guidance computer to begin autotrack mode for the rendezvous
radar. The radar began interactingwiﬂnheguidancecomputertomaintain lock on the command module
in case of an abort back to the command module. This increased the workload on the computer. Just as
Armstrong was getting to where he could see the landing location, Akdrin reported "Alarm ! 1201 1201 I*
(f6]) The guidance computer was overloaded and beginning to shed less critical processes. Back in
Houston, guidance officer Stephen Bales, who was unaware of the activation of the radar since it
occurred behind the moon, quickly analyzed the computer overload situation. He saw that the descent
profile was nominal and nothing appeared to be going wrong (Fortunately, the rendezvous radar, which
was not needed yet anyway, was the only process low enough in priority not to be run.). However, the
alarms continued to go off, causing "grave concem® (11]) about the mission. As precious time was being
spent dealing with the computer problem instead of looking out the window to pinpoint the landing site,
Am\su'ongwasunawatethathewasheadedtaward a crater about the size of a football field that was full
of boulders. Bales, fearful that if the computer overload continued then it would reject all its programs,
instmctedlhecrewtostopmnitoﬁngmelar\dngradardataandleaveﬂ\aﬂuncﬁonbmegmmd This
reduced the load on the guidance computer, ceasing the disturbing alarms. Armstrong looked out the
whdawandnoﬁcedmelandngsitewsbad,qtiddytookovermanualcontol and guided the vehicle to
a safe landing with only seconds of fuel to spare.

The computer overload was later called the most serious problem of the Apolio 11 flight by mission
analysts and was the center of the post-flight analysis. One's first reaction might be to blame the crew or
mission planners for putting the rendezvous radar in autotrack. However, as they testified to afterwards,
they were completely unaware that this action could lead to computer overload or any other problem.
Although designer’s of the guidance system had suspected such an action could cause a computer
overload, they were unable to confirm this in simulations. In any case, it shouldn'tbe a problem because
they had designed the system to handle overloads by shedding less critical processes. From their point
of view, it could be said that there was no computer overioad "problem"; the system functioned perfectly.
Unfortunately, the guidance system was also designed to announce the problem by a vague alarm which
did not convey the lack of seriousness of the situation. Ground controliers, though they quickly handled
mesituaﬁonandpreventedamisionaborl.coddbeblamedfornotdagnosingmecauseoﬂhe
overload. However, meyhadnodataonwhid'ltobasesud!adiagnosis. They were not even able to
see that the radar had been commanded to autotrack since this action occurred behind the moon.

What does this have to do with verification and validation (V&V) of expert systems? Certainly none of
these groups can singly be blamed for this problem. I could all be dassified as a pure accident due to
several contributing factors. However, more complete verification and validation (V&V) could have
prevented this problem from occurring. And, although no expert systems were involved in this situation,
several intelligent agents that today could invoive expert systems played a key role in the problem. We
will use this Apolio 11 scenario to demonstrate several key points about V&V of expert systems by

1 Handout #12

considering how V&V could have avoided this problem, even if one or more of the intelligent agents really
involved an expert system.

importance of Requirements and V&V of Knowledge

Obviously, the crew woulkd not have put the rendezvous radar in autotrack if it had not been called for in
the crew procedures. The mission planners would not have put this action in the crew procedures if they
had been aware of its potential to cause a problem. We could say that the mission planners should have
asked the design engineers if any procedure changes could potentially cause problems. If the crew
procedures were designed by an expert system (ES), there would have to be a requirement for the ES to
consult design engineers about potential problems caused by changes, especially last minute changes, in
the procedures. So, more complete documentation of functional requirements, including the requirement
to ask about potential problems of last minute changes, could have prevented the problem. However,
this might not be realistic, especially for an ES. Instead, it might be more realistic to have documented
possible problems associated with types of changes. For example, a simple rule stating that additionally
activated processes (e.g., the one activated during autotrack) add additional load on the computer along
with a rule that said that the computer was already expected to be close to its 90% processing design
limit during descent would be enough information for the ES to be alerted to the problem of adding
autotrack activation to the crew procedures. This is an example of the need to V&V knowledge that goes
into an ES.

importance of Static Analysis

Guidance design engineers suspecied such a problem could arise; this potential problem had been
reviewed and understood. Unfortunately, the engineers were unable to accurately simulate the
wandering of the rendezvous radar and the processing load on the computer that would be required to
keep the radar locked onto the command module. Yet they were easiy able 1o analyze the ultimate
cause of the computer overioad problem and completely understood how the activation of autotrack
mode could lead to the problem. According to one engineer, although the overioad had been an
acknowiedge possibility, when the waming lights came on it “really brought us up out of our seats” ([1]).
Though they could have predicted it, it was still a surprise when it actually happened. This illustrates that
certain kinds of problems can be easy o find using static analysis (L.e., manual analysis) and can be
difficult if not impossible to find (or confirm) using dynamic analysis (i.e., computer simulation). This
holds true for ESs as well as conventional software.

Importance of Explicit Documentation of Design Constraints

Similarly, the guidance system designers had no requirement to tell the mission planners that there was a
possibility of a computer overioad problem if the rendezvous radar was in autotrack. This is an example
of one intelligent agent (or part of the overall system) having knowledge about a constraint but this
knowledge is not explicit so that other inteligent agents (i.e., mission planners) could see that they were
violating the constraint. if both mission planning and guidance design were done by an ES, this would be
an example of a implicit constraint. Consistency of the guidance design with mission planning could not
be verified because the constraint(s) was implicit, i.e., known but hidden. For verification purposes, all
constraints should be made explicit.

Importance of V&V'ing Even the Smallest Changes
The change to the crew procedures to put the rendezvous radar in autotrack during descent had been a

last minute change and this may have contributed to the potential problem not being discussed more
before the flight. Because ESs are changed frequently, many ES modifications are really last minute

2 Handout #12

changes. As with the Apollo 11 planning, there may be a tendency not to V&V these last minute changes
because they are small minor enhancements. But, as can be seen with this example, even small minor
changes can have drastic consequences. All changes, no matter how minor, need fo be V&V'ed.

Correctness of System Responses Can be Difficuit to Judge

Although this example problem has often been used as an example of a computer software bug, it is
really a very complex and subtle problem that can not accurately be classified as a software bug. In fact,
it is very difficult to identify the speci fault or error that caused the problem. it is even debatable as to
whether any problem occurred at all; the system did operate comectly. As with many complex problems,
correctly classifying a system response as an efror may require expert judgement; this is especially true
of ESs.

Importance of Different Kinds of Correctness

:p.One reason this example pmblemisdifﬁwﬂtoanalyzeismat.wimanysystam.mereamreally many
different kinds of correctness to be considered. For example, to the design engineers, the system was
correct but to others, the system had a severe problem.

Functional Correctness

Toﬂwededmengineerswhoweremosteoncemedabmnhmcﬁmdcomdnees.thesystemwascorred.
That is because it comrectly implemented all the functions that they thought it should. For all inputs, the
system produced exactly the output they expected.

Performance Correctness

Pabnmnoemneches,whemermesystemcanpeﬁmdlmdabmmmestsmavmhue
resources, was a key issue in this example problem. And the system was correct from a performance
point of view. nddmﬂmm&mm;mwmmmM,MMWasmt
mandatory, was not handled. However.akeypohtﬂbsﬂatedbyhisexamplepmblemismedfﬁmnyh
analyzing performance comreciness. The design engineetswemmabletopredctwhenmecompm«
migMbeoveﬂoaded;itwoulddependmabtofvaiabbsmmeycouldnolamlyzewimceﬂainty. This
isespeciallytmeofESs,whi&oﬂenmustdeathvaryingsihsaﬁonsandmsecompu\aﬁon(or
inference)timeseanvalydependngonmeoombinaﬁonofrequeslsilistryingtosaﬁsly.

User-interface Correctness

To the crew; whose understanding of the system is primarily due to lights, alarms, and displays
information produced by the system; the system was less correct than they would have liked. Thatis, the
system had a user-interface problem. They had no way of knowing what the 1201 alarm really meant
and how serious the problem was. Armstrong, when asked about the seriousness of the 1201 alarm
during a press conference, said °... as soon as program computer alarms manifest themselves, you

aborted. So although the system was functionally comrect, from a user-interface point of view it was
incofrect.

3 Handout #12

Safety Correctness

The most important type of correctness in most systems is safety - "Above all, do no harm.” When one
looks at the alarm issued by the guidance computer from a user-interface and safety point of view, one
must conciude that it was definitely not correct. The issuance of the alarm actually created a safety
problem where none had existed before. There was no problem untii the crew and the ground began
analyzing the 1201 alarm, wasting precious time while the vehicle headed toward an unsafe landing area.
Yet, from a functional point of view, the same alarm was correct. It correctly indicated that the computer
was indeed overioaded. So it really is important to look at things from different correctness points of
view.

Expert Systems are Software, Only Different

When looking at many statements made about the guidance computer, one can get the impression that
the system was truly intelligent. One explanation of what the computer was doing was "The computer in
effect started to tell the crew that it was being asked to work beyond its capacity. It advised that
interrogations from the rendezvous radar should cease because they were of lower priority® ([1]). This
expianation really makes it sound like the computer “understood" what it was doing. Aldrin's description
was a little more technically correct but still implied some more intelligence that might be due. He said
the computer ... continually goes through a wait list of one item after another. This list was beginning to
fill up and the program alarm came up® ([4]). In reality, this 20 year oid machine language program
neither explained its actions nor looked at its kst of instructions and figured out that it was more than it
could safely handle. Most users are not really aware of how "intelligent” the programs that they use are.
For all they know, many of them could already be ESs. In other words, when looked at as a black box
that does something, one doesn't really care whether the box has an ES in it or not. Itis just software.

However, had the guidance computer actually contained an ES based on knowledge from an expert and
implemented in an interpreted non-procedural language (e.g., a production system), V&V would have
been done differently. It probably would have solved a more complex problem than simply calculating
guidance data and passing it to different devices (e.g., the rendezvous radar). It probably would have
made the decision of whether or not to put the rendezvous radar in auto-track. And instead of analyzing
the correctness of a crew or mission planner decision, the correctness of the programmed computer
decision would have been done. it also could have been a collection of rules, some of which processed
things for the rendezvous radar as well as other things. If so, the analysis required to figure out that the
radar being in autotrack was the cause of the problem would have been more difficult because of the
complex intermingling of its processing with other processing. On the other hand, the handling of
requests to the guidance computer could likely be handled by a far simpier and smaller rule-based
program than the original machine language program. And smaller simpler programs are usually easier
fo analyze and test. Expert systems are software but they are a truly different kind of software.

Summary
Using the Apollo 11 computer overioad scenario, the following key points have been #llustrated.
1. Importance of complete V&V
2 Importance of requirements

3 Importance of knowledge V&V
4 Importance of explicit documentation of constraints

4 Handout #12

5
6
7

8

Importance of V&V'ing all changes, no matter how small
Subjective nature of correctness, in some cases
importance of looking at all the many different kinds of correctness

Expert systems are software but a different kind of software

NASA/JSC's workshop on Verification and Validation explains all of these points in more detail and
provides spedific recommendations for how to handle all the different issues in V&V of ESs. By attending
this workshop, you may be able to avoid one of your user's from experiencing an "Alarm 1201 I" situation.

5 Handout #12

References

[1] "Computer Overload Laid to Radar Mode®, Aviation Week and Space Technology, Aug. 4, 1969

] "Armstrong’s Piloting Reflexes Avert Rocky Landing for Eagle”, Aviation Week and Space
Technology, July 28, 1969

[3] Beyond the limits book (full reference needed)

[4] NASA press review document (full reference needed)
5] NASA Apolic 11 anomaly summary document (full reference needed)
[6] Book about Apollo 11 (full reference needed)

6 Handout #12

Worksheet #1: State Diagrams

When To Use This Technique:
System Test, Unit\integration Test, and Static Test

Who Uses This Technique:

Anyone interested in analyzing the system (e.g., users, developers, independent
verifiers, etc.)

Why Is This Technique Used:

Generation of test cases, Design, Requirements definition, Correctness analysis

How To hi hnli

Key Terms

Automaton A machine or control mechanism designed to follow automatically a
predetermined sequence of operations or respond to encoded
instructions. Sometimes called a “state machine”.

Event An external stimulus that either by itself or, in conjunction with other
events, causes an object to change state

Event Class An abstract name describing a collection of common events.

Function A one-to-one mapping that has no states.

Module A'piece'ofmesystemmat,initsmostcomonfonn.wptwesa
uniquepieceoidataandOperaﬁonsonmatdala. Synonymous with
an "object’.

Output Extemally visible (to the module) results due to side effects of a state

Scenario Asequenceofeventsthatoccwdlmngoneparﬁcularexewﬁonofa
state machine

State A complete description of the state machine at a particular instant in
time

State Diagram A network of states and events where transition from the current
state to the next state depends both on the current state and the
occurrence of a specific event.

1 Worksheet #1

State Transition When the current state changes (or transitions) to the next state.
State transitions appear as the "arcs” between states in a state
diagram. A state transition can occur automatically or as a result of
a single event or event class. Arcs that represent transitions that
happen automatically are not labeled.

Method

For each module:
1. Identify inputs and output for the state machine

a Identify stimuli and associated responses. if each event by itself leads
to an output then a state machine is probably not appropriate. Use a
function instead.

b. ldentify internal states and the events that cause transitions from one
state to another
3 identify initial and final "states"”

4. Build a state transition matrix that maps states against stales
. Given n states, the matrix willbe n x n

5. Draw a state transition diagram
. States appear as circles
. For each (S;, Sj) in the transition matrix that equals 17, draw an arc from
Sito §j
. Label each arc with the specific events that cause the state transition

Helpful Hints
Unless the system in extremely simple, do not attempt to build a state diagram that
describes the entire system.
Focus on building state diagrams centered on specific objects (or modules) and analyze

To enhance understandability, begin with high-level "abstract” state diagrams and then
refine them into more detailed diagrams as the need for additional detail arises. A
module that is in one state for the "abstract” state diagram must aiso be in one state for
the refined state diagram.

The results of steps 4 and 5 are conceptually the same. They are simply represented
differently. It is helpful to do both, but certainly not necessary.

2 Worksheet #1

Example

Consider, for example, the following description.

A simple traffic light controller at a four way intersection has car arrival
sensors and pedestrian crossing buttons. In the absence of car arrival
and pedestrian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. With a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto

ian sensors detect no approad\ingtralﬁcinthecw'rerndirectionof
traffic flow, the traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new detection of continuing traffic up to a maximum of
one minute.

Some (there are others) possible scenarios that cause the traffic light to change are:
. Noapproadwingu'afﬁcforatwomirmeperiodshouldmangemelight

. Waiting traffic is detected and no approaching traffic is detected for the next 15
seconds

. Waiting traffic is detected and approadingh'afﬁcisdetectedeadlsacond
thereafter for at least one full minute.

Fromthehighestlevelofabshactionilisdearthatwhenapeﬁodofﬁm(hereaﬂer
referred to as a timer) expires the traffic light changes. Figure 1 shows a state diagram
modeling this abstraction. Asimplesta&etransiﬁonmaﬁixmatminorsme state diagram
is also included in figure 1. Even though, from a high level, this is an adequate
description of the traffic controller, there are many details not represented. For example,
the state diagram of figure 1 alludes to the use of a timer, yet details conceming the

jon of timers is hidden. Also, from the scenarios, it is clear that traffic flow impacts
when the light will change. Yet, this information is also hidden from the abstraction in
figure 1.

TheslatecﬁagramofﬁgureZshwsarefnementofmestate diagram shown in figure 1
that describes what a timer should do within the traffic controlier system. Notice that
details regarding the impact of traffic flow are now captured. This is because the traffic
impacts the operation of the timers which in tum impact the operation of the light.
Therefore, details regarding traffic flow are a needed part of the diagram in figure 2 in
order o describe how the timers should work. Despite the additional detail, the mapping
from one diagram to the other is relatively straightforward. Each transition that is caused
by an expiration of time (asopposedtoatamiﬁon@usedbyapwoadﬁngorwaiﬁng
traffic) maps to a change in the light.

3 Worksheet #1

Simple Traffic Light
State Machine

Time Expires
Green
States | RED GREEN
0 1
GREEN 1 0

Figure 1

4 Worksheet #1

Timer State Diagram

States Timer when Timer when
no waiting trafficis
traffic waiting
Timer when 1 1
no waiting
traffic
Timer when 1 1
trafficis
walting

Figure 2

Worksheet #1

Worksheet #2: Decision Tables

When To Use This Technique:
System Test, Unif\integration Test, and Static Test

Who Uses This Technique:
Anyone interested in analyzing the system (e.g., users, developers, independent
verifiers, etc.)

Why Is This Techni :

Generation of test cases, Design, Requirements definition, Correctness analysis

How T e This Technique:

Key Terms
Action Results caused by success of conditions (i.e., the right-hand side of
arule)
Condition Stimulus that, when satisfied, contributes toward one or more

actions (e.g., part of the left-hand side of a rule)

Decision Table A matrix that has one column for each possible condition and one
column for each possible action. Condition columns appear as far to
the left in the matrix as possible. Action columns appear as far to
the right as possible. Values appear in the columns to convey
specific information. Two kinds of inforrnation are conveyed:

Binary (1 or 0) e.g., Condition occurred or not, action

performed or not
Multi-value e.g., column contains a value for a variable
Function A one-to-one mapping that has no states.
Module A "piece” of the system that, in its most common form, captures a
unique piece of data and operations on that data. Synonymous with
an "object”. .
Rule Each row of a decision table is called a “rule®. Rules are of the form:

if <left-hand side> Then perform <right-hand side>
Scenario A sequence of one or more rules in the decision table

1 Worksheet #2

Method

For each module:

1.

2.

Identify all possible conditions and actions along with all possible values for each.

Best to start by identifying and analyzing stimulus/response histories.

Build a matrix where rows will serve to map conditions against actions

. For binary decision tables, given n conditions and m actions, the matrix
will have 2" rows and (n+m) columns. Matrix dimensions will vary for
non-binary (e.g., multi-value) decision tables.

. Condition columns appear to the left (C4, C3, .. Cp;) and action columns
appear to the right (A4, Ay, ..., Ag).

C4 Co Cn Aq Ao Aq

Fill in the condition columns with all possible combination of 1's and 0's (1's
indicate that the specific condition is true, 0's indicate the opposite)

G C ... Gla A oA

1 1 1

0 1 1

1 0 1

Examine each row and determine the actions that should occur as a result of the
conditions. Place a 1 in the column for each action that should occuranda 0 in
those that should not occur. For cases, where it is not clear whether a specific
action results from a set of conditions, place a *7" (or any other special character
of your choice) in the column for that action.

1 1
0 1 1
1

Cf C ... ChlAa A ... A
0 0
0 1
1 0

Work with users, experts, elc. to resolve specially marked columns.

2 Worksheet #2

Helpful Hints
The size of decision tables suffer from combinatoric explosion if they are used to
describe an entire system (even a relatively simple one). Decision tables work much
better at a unit or module level.

Decision tables are complementary to other techniques such as state diagrams and
cause-effect graphing.

Decision tables transiate fairly easily to rule-based languages.

Make sure all “slots” in the matrix are resolved before proceeding. Doing this guarantees
that all possible conditions and their corresponding results have been considered.

Very good for analyzing correctness/completeness of a system, building test cases, and
performing system design.

Example
Consider, for example, the following description.

Ashmpleh'afﬁcﬁghtcomrolleratafourwayintersecﬁonhaswanival
sensors and pedestrian crossing buttons. in the absence of car arrival
andpedeshiancrosingsignals,metrafﬁcliQMcomroIlerswitdresme
direction of traffic flow every two minutes. With a pedestrian signal to

the auto and pedestrian si nals in the direction of traffic flow; if auto
pedesu'iansensorsdetectmappmadingu'afﬁcinmedeirecﬁonof
traffic flow, the traffic flow will be switched in 15 seconds, if such
approadmingtrafﬁcisdetected.meswitmhtrafﬁcﬁowwﬂlbedelayed15
seoondswimead\newdetedionofconﬁmﬁngﬁafﬁcuptoamaximumof
one minute.

Some (there are others) poesiblescenaﬁosmatcauseme traffic light to change are:
. Noapproadringtrafﬁcfo:atwomimbpeﬁodshouldmangemeligm

. Watiting traffic is detected and no approaching traffic is detected for the next 15
seconds

. Waiﬁngtrafﬁcisdetededmdapproad!ingtmfﬁcisdetec&edeadwsecond
thereafter for at least one full minute.

At the highest level of abstraction, the traffic controller changes the traffic light when a
specified period of time (hereafter referred to as a timer) expires. Theretore, there is only
one condition to consider; whether a timer has expired or nol. There is only one action
that occurs based on this condition; the light changes. The decision table of figure 1
ilustrates the simple decision table that results.

3 Worksheet #2

Timer Expires Change Light

Figure 1

Obviously, from both the problem description and the scenarios, there are other

conditions that indirectly impact when the light changes because they impact how the
timer works. Therefore, the table of figure 1 can be "refined” to a more descriptive
decision table that captures those hidden details. Figure 2 illustrates this refined decision
table. The following conditions are considered in this table:

. Traffic is approaching in the current direction of traffic fiow

. Traffic is waiting for the light to change

. 2 minute times has expired

. 15 seconds has expired

. Traffic has been waiting for 1 minute

The actions resuiting from these conditions relate to selecting the appropriate timer to
use. These actions are:

. Wait for 2 minutes

. Wait for 15 seconds

. Wait for 1 minute

A partially filled in table is shown in figure 2. The filled in values relate directly back to
the scenarios identified at the introduction to this example. For example, the first filled in
row of the table in figure 2 indicates that when traffic is detected in the cusrent direction
of traffic flow and no traffic is currently waiting for the light to change then the 2 minute
timer is used (i.e., the controller will begin waiting for a 2 minute period. The second
filled in row indicates that when waiting traffic is detected and the controller is waiting for
2 minutes to expire, the controller should begin looking for either 15 seconds to expire or
1 minute (depending on the presence of approaching traffic). There are many more rows
(25 rows to be exact). Many of these rows will result in impossible scenarios or "don't
care” scenarios. The important thing is that all scenarios have been considered. The
table of figure 2 could be relatively easily related to the table of figure 1 by adding
another action that indicates whether or not the controller needs to be signaled that, due
to actions related to the timer, the light should change.

4 Worksheet #2

App | Wait | 2M | 158 | 1M | Wait | Wait | Wait
Exp | Exp | Exp | 2M | 158 | 1M
1 0 1 0 0 1 0 0
0 1 1 0 0 0 1 1
Figure 2

Worksheet #2

Worksheet #3: Cause-Effect Graphing

When To Use This Technique:
System Test, Unifiintegration Test, and Static Test

Who Uses This Technique:

Anyone interested in analyzing the system (e.g., users, developers, independent
verifiers, etc.)

Why s This Technique Used:

Generation of test cases, Design, Requirements definition, Correctness analysis

How i nique:
Key Terms
Abstraction A higher level, equivalent description that hides unnecessary
implementation detail.
Cause A stimulus that contributes toward one or more responses.

Cause-Effect Graph A graph where all causes appear fo the left and all effects appear to
the right. Arcs are drawn from causes to effects. Arcs either go
directly from one cause o an effect or, via boolean operators (see
figure 1), combine with arcs from other causes to go to an effect.

1 Worksheet #3

Using Operators in
Cause-Effect Graphing

\/ "OR"

O/

Ospr
Q)Q

Figure 1

Effect A response generated by combinations of simui.

Module A‘piece'ofmesystunmat.hilsnwstmmnfonn,captmsa
unique piece of data and operations on that data. Synonymous with
an "object”.

Scenario A path through the cause-effect graph.

Method

For each module:

1. identify all possible causes and effects. This can be done at varying levels of
abstraction. Thebestplacatostwtisbyidenﬁfyingstirmliandrewonses.

2. Place all causes to the left side of the graph.
3. Place all effects to the right side of the graph.

4 Map causes to effects.
a Look at different combinations of causes to determine if those
combinations are possible
b. Try to generate interim nodes in the graph as a way to capture

2 Worksheet #3

Helpful Hints

The size of cause-effect graphs suffer from combinatoric explosion if they are used to
describe an entire system (even a relatively simple one). Cause-effect graphs work
much better at a unit or module level.

Cause-effect graphs are complementary to other techniques such as state diagrams and
decision tables.

Cause-effect graphs transiate fairly easily to rule-based languages (e.g., each path isan
ii-then-eise rule).

Very good for analyzing coectness/completeness of a system, building test cases, and
performing system design.

Example
Consider, for example, the following description.

A simple traffic light controller at a four way intersection has car arrival
sensors and pedestrian crossing buttons. In the absence of car amival
and pedestrian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. With a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto
pedesﬁansemsdetectmapproadlhgtrafﬁcinmemmdrecﬁonof
traffic flow, the traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new detection of continuing traffic up to a maximum of
one minute.

Some (there are others) possible scenarios that cause the traffic light to change are:
. No approaching traffic for a two minute period should change the light

. Waitingtrafﬁcisdetectedandnoapproadningh'afﬁcisdetectedformenexns
seconds

. Waiting traffic is detected and approaching traffic is detected each second
thereafter for at least one full minute.

At the highest level of abstraction, the traffic controller changes the traffic light when a

~ specified period of time (hereafter referred to as a timer) expires. Therefore, the
expiration of a timer is considered a cause that contributes to the effect of changing the
light. The current status is another cause that effects the final status of the light The
cause-effect graph of figure 2 illustrates these results.

3 Worksheet #3

Causes Effects

Figure 2

Obviously, from both the problem description and the scenarios, there are other
conditions that indirectly impact when the light changes because they impact how the
timer works. Therefore, the tabie of figure 2 can be "refined” to a more descriptive
cause-effect graph that captures those hidden details. Figure 3 illustrates this refined
cause-effect graph. The following causes are considered:

Traffic is approaching in the current direction of traffic flow
An auto is waiting for the light to change

A pedestrian is waiting for the light to change

2 minute times has expired

15 seconds has expired

Traffic has been waiting for 1 minute

The following timer effects result from combinations of the causes defined.

Wait for 2 minutes
Wait for 15 seconds

' Wait for 1 minute

4 Worksheet #3

Figure 3

Notethatthegraphofﬁgtmshasmerimnodesmatareneitherdrectwusosordirect
effects. TtwseaecomenbMabskadionsMareheIproﬁmbuildhgandanalyzing
the generated graph. For example, the abstraction traffic waiting is used to determine a
pedeshianoraubcouldhavecausedmesystemtodetedwaiﬁngtrafﬁc. interms of the
directresult.however,mislevelofdetaﬂisnotmquired. The only thing the system
needstoknowismatttafﬁciswa'ﬁng.nottheldndoftrafﬁcmatiswaiﬁng.

The graph of figure 3 is not complete. Completion of the graph will be left as an exercise
for the reader.

5 Worksheet #3

Worksheet #4: Program Proving (Axiomatic Analysis Using
Symbolic Execution)

When To Use This Technique:

Univintegration and Static Test

Wh Thi ni

Anyone interested in analyzing detailed descnphons of the system (e.g., developers,
independent verifiers, etc.). Users would probably not be interested in this technique.

Why is This Technique Used:

Good for proving correctness of specifications. It readily highlights deficiencies in
specifications. It aiso helpful in applying stepwise refinement.

How To Use This Technique:

Key Terms

Code Fragment A "piece” of code. Can be as simple as one construct (e.g., if-Then-
Else) or as complex as an entire module. Should be surrounded by a

pre-condition specification and a post-condition specification.

< pre-condition >
... code fragment ...
< post-condition >

Mathematical Induction A proof process that invoives demonstrating that if something is
true for ith case, then it must be true for the i+11 case. In the
case of loops, this means that by showing the first iteration
works and that the pre-condition is satisfied at the start of
another iteration, additional iterations will also work.

Pre-Condition A specification that states the properties that must be true for the code
fragment that follows it to be correct.

Post-Condition A specification that states the properties that must be true after
execution of the code fragment that precedes it.

1 Worksheet #4

Method

1. Define program properties to be proved. To get the most benefit from this
technique, insert "pre” and "post” conditions around code fragments.

2 Build a graph of the program flow.

a. Rather than build a large graph for the entire program, build several
smaller ones. Use the "pre” and “post” conditions as boundaries for
doing this separation.

b. When loops are involved, two cases must be considered: no iterations
and at least one iteration. Since one can not exhaustively prove all
iterations, use the inductive process to demonstrate correctness of
looping conditions of the latter case.

3. Assign symbols as values for each variable of interest (variables of interest are
those that will “prove” program properties).

4 Trace program execution by substituting symbols for variables. Prove properties
as they are encountered in the trace.
a Build a matrix with one column for each variable of interest and one row
for each line of the program to be traced

Helpful Hints

Formal program proving works best on the most critical parts of the system. informal
proofs are more practical for the less critical parts of the code. Regardiess of whether
the proof is formal or informal, the goal is the same: prove the correctness of

When doing formal proving, focus on the “interesting” parts of system. Proofs can
become long and unwieldy if everything (e.g., all program variables) is considered.
Often, only a small subset of things are of interest. For example, if a program has ten
variables and the loop you want to prove uses only three of them, then tailor the proof to
analyze only those three.

2 Worksheet #4

Example
Consider, for example, the following description.

A simple traffic light controller at a four way intersection has car arrival
sensors and pedestrian crossing buttons. In the absence of car arrival
and pedestrian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. With a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto

ian sensors detect no approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new detection of continuing traffic up to a maximum of
one minute.

Given this simple, consider the procedure shown in figure 1. This procedure when
executed determines the appropriate time at which the light should change once waiting

traffic has been detected.
Procedure Process_Signal
1 T):=Tc +60;
3 While T, < Tg Loop
5 i Approaching_Traffic Then
6 f Te+ 15> T Then
9 End Hi;
10 End If;
12 Te:= T+,
13 End Loop;
14 <Tc-TsAnde<=T|>
Figure 1

Based on the procedure shown in figure 1, the first step of the method is complete.
Lines 4, 11, and 14 are the conditions that the symbolic execution will prove. Lines 4 and
14 are the "pre” and “post" conditions, respectively for the loop of line 3. Lines 4 and 11
are the "pre" and "post” conditions, respecitively, for the lf-Then-Else at line 5.

3 Worksheet #4

Now that system properities have been defined, a graph is built to support tracing of the
procedures execution. Rather than building one large graph that documents the entire
procedure flow, two smaller graphs are built. Another reason for doing this is because
there is a loop. Whenever there is a loop, behavior must be examined for two cases:
the loop iterates at least once and the loop does not iterate. Figures 2 illustrates this
reasoning by showing two graphs built by "cutting” the execution at line 4.

No Loop iterations

@
®
(@ [é ®)

u «

At Least One Loop lteration

).~ -
i 6 :ﬂ)
-, -}-\
} i 8)
= P /
' i
TR
3
(4) 'y

Figure 2

No proof is necessary for the graph showing no loop iterations (however, it would be worthwhile
to demonstrate the path through branch (3b) is correct) because lines 1 and 2 show that the loop
will always iterate. The more interesting graph covers the case where the loop iterates at least
once. For this case a matrix is constructed to document the trace. Symbols are assigned to
each variable of interest and traced in a unique column of the matrix. Every time the trace
encounters a “pre” or "post” condition, arguements are provided, in terms of the symbols, as to
how that properly is satisfied. Figure 3 shows a partially complete proot for the graph with at

least one loop iteration.

Worksheet #4

Lines te:8 o tg:p Arguements

1 8+60

2 8+15

4 Em:tc<t|andts<=ﬂandtc<ts
TRUE : substitution of values for {c and tg
yields the following:
8+15 <= B+60 and B < 8+60 and B < B+15

5b : Appmadting_SignalisFALSE

11 Prove: ts<-t|andtc<ts
TRUE : values for these variables have not
changed since line 4 therefore, the same
arguements apply

12 8+1

3b te>=ts

3a te<ts

15 Prove: to=tsandig <=1

" TRUE : if, after substituting symbols,8 < p

(ine 11) and B+1 >= i (line 3b) then 8=y
Also.sincep«aatlineﬁandthevahesp
and @ have not changed, then tg <= {; still
holds

4 Prove; to<tgandtc<fandig<=1

TRUE : { < tg holds from line 3a

ts<-t|holdsshoevaluesfortsandt|have
not changed since line 11
Sincets«‘t.andtcdsarebothtrueﬂ'\entc
<Yy

Figure 3: Results of tracing the iteration graph from figure 2

5 Worksheet #4

Worksheet #5: Hazard and Fault Analysis Using Fault Trees

When To Use This Technique:

Static Test
Who Uses This Technique:

Anyone interested in analyzing the safety corectness of software (e.g., developers,
independent verifiers, users). Users are included because they will need to heip define
the hazards that the software must account for along with what the software's response
to those hazards should be.

Why Is This Technique Used:

From a testing perspective, identifying hazards and faults and their relationship to the
soﬂwarehelpsmeproce&sofbtﬂdingtestmesformeseeondﬁons. From a design
perspedive.thistechniquecan(1)drivemedesignofasolutionthathandesfaultsand
hamrdsand(Z)afdhdeum\smﬁngthatmesoﬂwamnwerdoeswﬁing'msab'me

to the identified hazards and faults.
How T is T :
Key Terms
Fault An error within that occurs within the software itself that could
potentially cause a hazard.
Fault Tree A graph (similar to a Cause-Effect graph) that, in the case of fault

ckivenmdysis,gtaphsiromagivenfault(orconciﬁon)toanend
resdtor,htheeaseofhazardanalysis,graphsfromagivenend
rewltbadmardstoitscauseﬁ.e.,hanrdsarerootsandfaultsare
leaves in the tree).

Hazard Anundesiableextemaleventmatcouldpotenﬁallybeausedbythe
software.

Method
1. Identify hazards and faults.

2. Build a tree.

1 Worksheet #5

a. For fault analysis, begin with a specific fault and work from the bottom of
the tree to the top to determine what “results”.

b. For hazard analysis, assume the result is a hazardous situation and then
work down the tree to decide what conditions must happen to cause the
hazard.

Helpful Hints

Very similar technique to cause-effect graphing. Since these techniques are similar you
might be tempted to create a single cause-effect graph that captures both. However, itis
probably better to analyze each kind of correctness separately. Fault trees for safety
correctness and cause-effect graphing for functional correctness.

Best when done on a module basis. That could either be the module itself or when
analyzing the where the module is used.

Example
Consider, for example, the following description.

A simple traffic light controlier at a four way intersection has car amival
sensors and pedestrian crossing buttons. in the absence of car arrival
and pedestrian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. With a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the current direction of
traffic flow, the traffic flow will be swiilched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new detection of continuing traffic up fo a maximum of
one minute.

The first step in analyzing this problem involves listing hazards and faults. Some
examples of hazards are:

. There is a collision in the intersection (auto/auto, auto/pedestrian)
. Traffic is stopped in all directions

Some examples of faults are:

. The controller's internal clock fails

. The sensors detecting oncoming traffic fail

Once a complete set of hazards and faults have been defined a fault tree can be buiit.
Figure 1 illustrates a fault tree for analyzing a hazard. Conditions that could contribute to

2 Worksheet #5

this hazard appear inside boxes and are nodes in the tree. Since multiple conditions may
contribute to any particular hazard (or multiple faults may contribute a single hazard),
boolean operators (and, or, not) to “connect” these conditions.

Colision in
Intersection

&

Light fais to Control Software Driver runs
turn green permits colision red kght

Software tums 2 Drivers enter
both lights green intersection
[|
Cars present in
opposing directions

Figure 1

Worksheet #5

Worksheet #6: Inspections

When To Use This Technique:
System Test, Unit/Integration Test, and Static Test

Who Uses This Technique:

The list of who participates in a particular inspection varies depending on where this
technique is applied and to what work product it is applied. However, from an overall
perspective anyone (user, developer, etc.) associated with the project will participate in
an inspection at some point during the process.

Why | is Technique

Inspections are estimated to catch approximately 60% of all errors. It is THE most
effective technique for analyzing a work product for errors.

ow To Thi :

Key Terms

Formal Inspection A formal inspection requires a meeting where all required
inspectors must participate and all rules must be followed

Iinformal Inspection An inspection that does not necessarily require a meeting. All
required inspectors may or may not participate and some rules
may be relaxed pending agreement from the moderator

Walkthrough Synonomous with a formal inspection

Method

1. Define the kinds of inspections and what they will inspect
a. At a minimum, there should be one inspection per "phase”

2. Determine who should participate in each inspection

3 Assign specific roles to the participants
a Focus is on keeping the inspection orderly and efficient

1 Worksheet #6

4, Define the "rules” governing the inspection

a. Focus is on preventing uninspected work products from being delivered
to the user.

Helpful Hints

Do not review an entire system at one time. Rather, review incrementally. These
increments naturally map to the modules of the work product.

Keep track of all inspection “results” that speak to the rationale behind the final form of
the work product. This is helpful should the work product ever (1) need to be re-
designed or (2) experience an error related to what was inspected.

The main focus of an inspection is identifying errors. Discussions regarding solutions to
those efrors should be done outside the inspection.

Example

1. What Should Be Inspected?

There are many kinds of work products that should be inspected. Some examples, are

requirements documents, detailed design, code, knowledge documents, test cases, test
results, etc.. in general, any product produced during the development process that will
either be used outside the originating organization or will be used in another pahse of the
development process should be inspected. The term “originating organization” refers the
the organization that actualty developed the product considered for inspection.

2, 3. Who Should Participate In The Inspection And What Should
They Do?

At a minimum, a moderator, developer, backup, requirements analyst, and verifier should
participate in an inspection. Hopefully, the organization structure is such that different
people fill each of these roles. Each of these inspection pariticpants performs the
following role in the inspection:

Moderator The role of the moderator is to conduct the inspection
process in a manner that assures the integrity of the
process. To this end, the moderator ensures that the
inspection team is prepared, has the right inspection
material, and completes all identified actions. Ideally,
the moderator should be someone outside both the
development and test organizations.

Developer The role of the developer is to be able to provide
rationale for the implementation approach used on the
work product.

2 Worksheet #6

Backup The backup is a member of the development team, but
is not directly involved in the implementation being
inspected. However, the backup does have a general
understanding of the work product. The role of the
backup is to be another “set of eyes® from a similar
perspective as the developer.

Requirements Analyst The role of the requirements analyst (this could be the
role for the expert) is to ensure that the inspected work
product complies with stated requirements.

Independent Verifier ~ Assuming an independent verification team exists, they
assume the role of examining the work product for
testability.

4. What Are The Rules?

With these roles defined, the next step is to define some rules to govemn the inspection
process. For example,

No inspection isoompleteuntillhemodefatorveriﬁesmalall issues related to the
inspection have been satisfactorily closed.

Each inspector mustoompleteanenorlogformeworkproductbeinginspected.
Theirspectorwildassﬁyissuesaseimeramajoremr(meworkproductis
incorrect as written), minor error (e.g., standards violation), or suggestion (an
altemative approach). Suggestions are optional while major and minor errors
must be corrected.
Nowakproductmnbereleasedmﬁlallinspecﬁonsonmatworkpmductam
complete.

The work product inspection package must include the work product itself and an
ovewiewofwhalistobeinspecbd.andanyoherswpoﬂmateﬁalmatwomd
aid the inspector.

Inspectors must be given sufficient lead time (e.g., 4 days) to prepare for the
. "

‘Iheresultsofmeinspectionaretobe'ﬁled‘byaproiectlibrarianformmre
reference.

Work products may only be reviewed informally when they are small.

Aninspectionshallnotbelongeru'nanZhoufsinlengﬂL

3 Worksheet #6

Worksheet #7: Testability Analysis

When T This Techni :
System Test, Unit/Integration Test, and Static Test

Wh This Techni

Primarily testers and developers.

Why | is Techni

A significant goal of any development project is to avoid implementations that are hard to
test. This technique is helpful in assessing the testability of a particular implementation.

wT This T

Execution Analysis

Infection Analysis

Mutation Testing

Propagation Analysis

Key Terms

Probability that a given component is executed. A component
here refers to a single implementation entity (e.g., a module, a
line of code, etc.). Lower probabilities imply lower testability
(i.e., harder to test).

Probability that a component is sensitive to errors. Lower
probabilities imply lower testability (i.e., harder to test).

Intentionally seeding a "correct” program with errors. The goal is
to identify test cases that can not distinguish between a correct
program and one that is not correct.

Probability that once a component is infected, it will affect the
execution results (e.g., "what the user sees”). Lower
probabilities imply lower testability (i.e., harder to test).

Method
1. Perform execution analysis
a. Select random samples of test cases
b. Run those test cases
c. Generate a ratio between the number of times a component execution

versus the number of opportunities.

1 Worksheet #7

2. Perform infection analysis

a. Do mutation testing

b. Trap the "state” of the output immediately after the mutated component
executes

c. Generate a ratio between the number of "states” that were infected (i.e.,
wrong) versus the number of opportunities

3. Perform propagation analysis

a. Set breakpoints following the target component

b. Intentionally modify the "state” of the at the breakpoint

c. Generate a ratio between the number of modified "states” that affected

execution output versus the number of opportunities

Helpful Hints

Without automated help (e.g., tracing when a component executes, random samples of
test cases, setting breakpoints, modifying program variables at the breakpoint, etc.), this
technique is very difficult to use. However, it does provide a nice breakdown of
categories to consider when static analyzing a component to determine its testability.

Example
Consider the following simple ruie base where A and B are initially TRUE and D is initially
FALSE.)
if Aand B Then
assert C
It C and D Then
print "rule base compiete”
exit

The second rule shown is a dead-end rule (since nothing asserts D then the rule’s LHS
will never be true). Now, consider the testability of the second rule. Since it is a dead-
end rule we would expect its testability to be low. This is obviously true since, for all
possible test cases executions of this rule-base, the second rule will never fire.
Therefore, its execution ratio is 0. Now, consider infection analysis. For this case, let's
say a mutant is any unique condition involving C and D. Based on this definition, only
one mutant will behave differently than the original program (If C or D Then ..., will fire
and produce output). Therefore, infection analysis shows a number near zero for the
second rule. Last, consider propagation analysis. This number will aiso be low for
similar reasons to infection analysis. Since the rule never fires, there is no way to perturb
the "state" after it fires (or, in other words, no output is ever produced). Therefore, the
testability is low. Given these factors, we can conclude the obvious. The second rule is

not testable.

2 Worksheet #7

Worksheet #8: Mutation Testing

When To Use This Technique:

UnivIntegration Test
Wh This Techni :
Testers

Why Is This Techni

This technique aids in the analysis the effectiveness of a given test case. A testcase is
not very effective if it can not differentiate between a correct program and an incorrect
mutant of that same program. In other words, if the output generated for a test case is
the same when running both the correct and the mutant program, then that test case is
not very effective at finding errors and should not be used.

How T This Techni :
Method
1. Generate a suite of test cases for the program being tested.
2. "Seed" the program with one or more errors
3. For each test case from the desired suite of test cases:

a. Apply test case to the “seeded” program

b Apply test case to the un-"seeded"” program

c. Compare results generated

d if the results are identical, then the test case is should not be used (i.e.,
either modify it to make it effective or remove it from the test suite)

4, Steps 1 through 3 can be repeated for many different mutations of the program
being tested.

Helpful Hints

Make sure the correct version of the program is kept separate from the mutant programs.
This should help avoid accidental delivery of a mutant to the user.

1 Worksheet #8

To offset the considerable effort required to build and manage mutant programs, this
technique could also be done statically (i.e., no mutant programs are built). In this case,
test cases would be analyzed to predict their sensitivity to the correctness of the

program.

Example:

Consider, for example, the following description.

A simple traffic light controller at a four way intersection has car arrival
sensors and pedestrian crossing buttons. In the absence of car arrival
and pedestrian crossing signals, the traffic light controller switches the
direction of traffic flow every two minutes. With a pedestrian signal to
change the direction of traffic flow, the reaction depends on the status of
the auto and pedestrian signals in the direction of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15 seconds, if such
approaching traffic is detected, the switch in traffic flow will be delayed 15
seconds with each new detection of continuing traffic up to a maximum of
one minute.

Some (there are others) possible scenarios that cause the traffic light to change are:

. No approaching traffic for a two minute period should change the light

. Waiting traffic is detected and no approaching traffic is detected for the next 15
seconds

. Waiting traffic is detected and approaching traffic is detected each second

thereatter for at least one full minute.
With this in mind, now consider the procedure of figure 1. This procedure performs the

necessary actions to determine when the traffic light should change. Using this an
example, then, examine the use of the mutation testing technique.

2 Worksheet #8

Procedure Process_Signal
1 T):=Tg +60;
2 Tg =T +15;
3 While T, < Tg Loop
4 <Te<TgAnd Tg <= TIANd Te < Ty >
5 If Approaching_Traffic Then
6 If T+ 15> T Then
9 End If;
10 End If;
11 <Ts<=TlAnch<Ts>
13 End Loop;
14 <Tc=TsAnde<=T'>

Figure 1

The first step in the process is to build a suite of test cases. These test cases can be
derived directly from the scenarios discussed earlier. The next step is to generate a

mutant program. The procedure in figure
generated by modifying one or more lines i
figures 1 and 2). The idea is to make subtl

to correct, but incorrect just the same.

Procedure Process_Signal
1 Tj:=Tc +60;
3 While T < Tg Loop
4 <Tc<TsAnde<=T|Anch<T|>
5 if Approaching_Traffic Then
6 If Tc + 15/=T) Then
7 Tg=T
9 End If;
10 End If;
11 <Ts<=T|Anch<Ts>
13 End Loop;
14 <Tc=TsAnde<=T|>

Figure 2

2 is an example of a mutant. Mutants are
n the a program (compare versions of line 6in
e modifications so that the mutants are "close”

The final step is to execute each test case against both the mutant and the non-mutant
programs. If the results are the same, then the test case considered is not effective in

Worksheet #8

finding errors in the mutated area of the code. For example, scenarios that invoive no
approaching traffic once a waiting signal has been received will not execute line 6 at all.
Therefore, output for this test case will be the same for both versions of the procedure.
However, a test case that involves repeated detection of oncoming traffic (e.g., oncoming
traffic is detected every 2 seconds) once the waiting signal has been received will work
differently for both versions. Therefore, that test case should isolate this kind of error.
However, not all scenarios involving oncoming traffic after a waiting signal has been
received will produce cause different results to be generated for the two versions of the
procedure. Can you see why? Therefore, mutation testing can help isolate those that
are most effective in exercising the mutated area of code.

4 Worksheet #8

Worksheet #9 : Planning for V&V

When To Use This Technique:

Planning starts at the earfiest stages of development and continues throughout the
development and maintenance of the system. No other development activities should
begin until a workable plan is in place. A workable plan is not necessarily a complete
plan. ltis probably not possible to define a complete plan this early. A workable pian is
one that contains enough of the right kind of information to properly guide development.

Who Uses This Technique:

Everyone associated with the development of a system has a part to pian in planning for
V&V.

Why Is This Technique Used:

There are many reasons for doing good V&V planning. Failure to do planning often
results in expensive and in-effective testing and poor use of resources. These can easily
cause your project to fail. Good planning, on the other hand, increases the likelihood of
success by focusing on two things: what you need to do the job (resources) and how
you will do the job (implementation).

How To isT ique:
. What is the problem to be solved?
. Who are the "users™? Do they need to be involved? lfso..when?
. Are there existing experts? How can they be used?

. What resources will be needed and when will they be needed?
. How much time/effort will be involved?

. Will prototyping be used? ¥ so, what goal will the prototyping achieve?

. What increments

. What work products will be produced?

. What life-cydie will be followed?

. What implementation approaches should be considered and why?

1 Worksheet #9

is T \

What kinds of correctness apply to your system and why? Assign a priority to
each kind of correctness

’ldentifyareasofpotenﬁalrisk

identify test techniques

2 Worksheet #9

VALUE AND COST EFFECTIVENESS OF V&V

Robert J. Boring
Ewel H. Hughes
Entergy Operations, Inc.
P.O. Box 756
Port Gibson, MS 39150

VALUE AND COST EFFECTIVENESS OF V&V

ABSTRACT

This paper describes a study of V&V costs for a small Software Engineering project at the Grand
Gulf Nuclear Power Station by the plant staff. The development applied IEEE standards for soft-
ware V&V and classical development methods that also complied with IEEE standards. The study
examined value returned by the software V&V costs and describes the specific criteria that relate
to value in the circumstances of a Nuclear Power Plant. V&V costs are summarized by phase of
development, defect removal rate and cost per defect. Extrapolation from the data is made to evalu-
ate alternatives for reduction of V&V methods.

VALUE AND COST EFFECTIVENESS OF V&V

INTRODUCTION

Verification and Validation is used to improve the overall reliability of software and control the in-
tegrity of the software delivered and to ensure that the product fulfills the purpose that was originally
intended. It is desirable to control the expenses of software V&V and if possible utilize it to control
delivery of value with the product. We define value as perceived return against costs of development
and maintenance. There exist several constraints on value for systems intended to support Nuclear
Power plant operation. First among these is the potential for abandonment of a system that may fill
its purchase specifications but not be considered reliable enough for the important tasks that the staff
wants the system to provide. Second is abandonment of the system from defects that frustrate the
users when they attempt complex tasks using the system. Third, systems can be functional and in
place but the much of the work is performed manually due to incomplete support of the actual tasks
of the users. Manual work—arounds actually force maintenance of the system and simultaneous
staffing to perform the work that the system was to provide. Finally the cost of system maintenance
can exceed reasonable resource requirements and cost due to a corrective maintenance effort.

At GGNS we have compieted a small project, less than 10,000 lines. and monitored the costs of de-

velopment, testing and instailation. The costs due to V&V are separable and will illustrate this

unique situation. The overall behavior and proportion of these costs may be useful to similar situa-

tions. The small project represents the worst case for software V&V costs. Any fixed costs will

show proportionally higher and variable costs will certainly have little economy of scale. In this

project, we estimate the technical risk was high due to the following factors:

~ Real—time requirements were present in the system

~ 35% of the system was to be done using a real-time kemel for operating system services

- Integration with unfamiliar third party object code was required

~ The system was distributed and used network communication as an underlying prernise for
development

— Work was done at system level or embedded system level exclusively — no applications level
work was done

To meet these difficulties, two teams were established. The more experienced team was assigned

to the Data Server Subsystem where the real-time requirements dominated. The other team built

the Man—Machine Interface Subsystem.

2-2

L.

VALUE AND COST EFFECTIVENESS OF V&V

Value is a function of what is returned.

The value of software is related to the benefits retumed by the use of that sofrware. More effi-
cient work performance, error reduction, better planning or communication are all net posi-
tive retumns that software can provide.

Constraints can limir the potential return of software. Software can limit the amount of work
performed or increase the potential for errors. Maintenance costs for software can be high
which reduces the net benefit. Possible consequences of too many defects include high main-
tenance costs, shortened system life, portions of the system abandoned or worked around, or
system rejection at installation.

V&V Program

Many itemns were designed to be configurable items so that the software could be reused to
support multiple functions so that the size of system could be as small as possible. These con-
figuration items decrease V&V costs as well as future maintenance costs. Configuration
items include expent system rule sets, database, screen displays, and reports.

Standards were adopted to insure conformance and decrease future maintenance costs.
Standards used were taken from industry and developed in house. Standards used were:

The method used to develop the project was a modified waterfall development cycle. It is
proceduralized and follows many IEEE Standards for V&V as well as development tasks.

C Language Only

Coding Standard

Interface Standard

Network Standard

CASE Tool Enforced Design Documentation Standard
Procedural Method for Development

The method includes six phases of development:

Software Requirements
Functional Design

- Detailed Design

~ Implementation

— Integration

- System Test and Installation

VALUE AND COST EFFECTIVENESS OF V&YV (CONT’D)

II. V&V Program (Cont’d)

The V&YV program used throughout the project was based on IEEE 1012-1986, Standard for
Verification and Validation Plans and IEEE 1028-1988 Standard for Software Reviews and
Audits. A list of IEEE V&V tasks performed can be found in Appendix A. V&V tasks were
combined and grouped to be more efficient. The V&V task groups were:

- Software Requirements Specification (SRS) Review

- Software Functional Design Specification (SDDS) Review

- Detailed Design Review

- Peer Code Review

- Unit Testing

~ Integration Testing

- System Testing

II. Costof V&V

The cost of the V&V program implemented was monitored by tracking the resources utilized

in each V&V task. Cost is presented in terms of effort (man—days) and schedule (duration).
Fifty—two percent (52%) of project effort was V&V tasks versus 48% non-V&V.

Fifty—seven percent (57%) project duration was V&V tasks versus 43% non-V&V tasks.
Seventy—three percent (73%) of our V&V effort was spent in testing. Figure 3—1, Percentage
of Project Effort on V&V Tasks, shows the relative effort of each V&V t1ask performed.

Figure 3-2, Percentage of Project Duration for V&V tasks, shows the relative duration of each
V&YV task.

Figure 3-3, Percentage of Project Duration by phase, illustrates the relative duration of V&V
tasks and non-V&V tasks in the project.

Figure 3—4. Percentage of Project Effort by Phase, illustrates the relative effort of V&V and
non-V&Y tasks in the project.

1V. Costs of Defects Removed

A record of defects removed by each V&V task was kept and is illustrated in Figure 4-1, Total
Defects Removed by Phase. Defects that are removed in carly phases are not propagated into
the next phase where they are potentially more difficult to remove. Figure 4-2, Defects re-
moved by Subsystem, illustrates the defect removal for each team.

24

1S sAS

L _5

SYSEL A WA U0 H0Jye 193f01 Jo aFejuanisg ‘|- 2undiyg

IS .—. ::D

AY ovoU .oom

>¢ mQQw >& mﬁn—m >~— SdS

ot

4

14

91

‘AR A Uo 1uads sem 1ojg 1900014 Jo %HTY

81

uoy3 199(o1d 3o 9%

SYSEL AP A 10j uonein 193fo1q Jo a8eiuadiag ‘7—¢ a1y

181 84S 8L W LN AYIPODIRd AYSAAS AY SAdS Ad SYS

'A®A £q uder sem uonemcg 153014 Jo g[S

01

Sl

174

uonresn(g 19fo1g Jo %

2-6

aseyq Aq uonein(y 13foid Jo oFejuadig g—¢ N1

.a._. mmm .m.—. :: -m.—.,::D AY9poD 9po) YAAS SAAS A¥ SAdS SQ4dS A4 SAS SAS

01

Si

0z

Y4

0t

uonemd

aseyq Aq 1oy 199(01] Jo 38eIuadidyg ‘H—¢ amBiy

181 sAS ISLUT ISLWUN AYSPOD po) WAAS SAAS AY SAAS SA4S AU SAS SUS

132{0149%,

81

2-8

aseyq Ag parouwiay $199J3(] [e10L, [dndiy
15 sAg ISL W IsLuun Ay ovoU -oom Al mQQm >~_ mcmm AY SYUS

0t

09

01

0st

081

012

ove

L il VIR

2-9

$199J2(

w)shsqng £q paaoway s193§3(‘g—p 3y

15 sAg Loy IBLWUN AYIP0DIRd AYSAdS AY SAdS AY SUS
07
oy
09 o
¥ 5
g N
8
g
08
001
$19)3q INW . ot
$1995 S

ovi1

VALUE AND COST EFFECTIVENESS OF V&V (CONT’D)

V. Cost of Defects Not Inserted

The data collected demonstrates that defects are more difficult to remove in latter phases.
Figure 5-1, Cost in Man—days to Remove Defect by Phase, illustrates our cost per defect at
each phase. The fact that testing is amore costly means of removing defects and the fact that
defects not removed in the earlier phases would propagate to the testing phases emphasizes
the cost effectiveness of early V&V implementation. This data suggests that delaying defect
removal until testing has an opportunity cost of up to two orders of magnitude greater.

2-11

aseyq £q $193)3(q 2a0wY 0} sAeq UBp ut 3s0))° |-G 31|

ISLu) AYIPoD INd AY SAAS Ad S

48 AY SYUS

<P i

01

0T

ov

¢,

193§3Q/150D

VALUE AND COST EFFECTIVENESS OF V&V (CONT’D)

V1. Value Returned

The system produced has been installed and in the hands of end users for seven months. De-
fects and comments have been recorded with favorable results. There have been two defects
found, the first defect was isolated to an operating system error from the computer vendor,
the other was a defect in third party display generation software detected with a new release
of that software and did not reach the field.

No defects have been detected in the software produced in the project. Operator acceptance
is high and requests have been made asking for other functions to be incorporated into this
system.

We feel that these requests are a vote of confidence from the users and reflect their satisfaction
with the new system.

V1. Conclusion

The V&V methods used in project and the metrics kept for the V&V tasks allow us to make
a educated estimate that there are less than five undetected errors in the system. The fact that
no defects have been detected in seven months of operation seems to indicate that the
remaining defects are benign. User perception is that reliability and utility of the system is
much higher than previous systems.

In comparing the V&V methods used in the project with this group’s past performance, the
defect rate prior to the project was greater than 5 defects per thousand lines of code and for
the project was less than 0.5 defects per thousand lines of code. The rate of removal of defects
prior to the project was estimated at 9 man—days per defect for corrective maintenance. In
comparison, the system test defect removal rate with V&V is approximately 40 man—days per
defect for system testing. It should be noted that there were approximately 200 known
discrepancies in the previous system.

Commercial systems available for comparison exceed the three defects per thousand lines
typical of the average software package. ! Our estimate is that those systems in use at GGNS
exceed five defects per thousand lines. At 1.1 million lines of supported software defects
would total in excess of 5000. At a defect removal rate of 40 man—days per defect that is great-
er than 800 man—years of corrective maintenance.

All phases of the development process contribute to defect insertion. Figure 7-1, Insertion
Points of Defects Removed in Testing, illustrates the number of defects removed in each
phase of testing and where those defects originated, design or coding.

2-13

VALUE AND COST EFFECTIVENESS OF V&V (CONT’D)

VI1l. Conclusion (Cont’d)

Testing can be costly way of removing defects. In terms of resources testing is inefficient be-
cause of the time required to go back through the steps leading up to a defect detection. In
terms of schedule testing is difficuit to work in any parallel fashion in the integration and sys-
tem testing phases. This means that you cannot apply all resources to make things go faster.
The result is that testing is less manageable in terms of schedule. Figure 7-2, Merit of V&V
Tasks Normalized to System Testing, illustrates the relative efficiency of defect removal for
each phase. This data suggests that V&V in the design phase is much more cost effective than
testing in defect removal and manageable schedules.

Figure 7-3, Cost of Defects by Phase if not Removed, illustrates the cost in man—days to re-
move all defects for all previous phases. If all defects had to be removed at system testing,
that phase alone would have taken more than eight man—years to remove all defects.

A V&YV program reduces the large cost of corrective maintenance by delivering fewer defects
to the production system. User acceptance is enhanced by getting their first impressions on
amore correct, less defect ridden system. The potential of user rejection or lack of confidence
is reduced by providing a more reliable system.

The potential for user rejection of a system can be described in terms of the number of defects
and the importance of the system. Figure 7-4, User Rejection Potential, represents the charac-
teristic behavior observed in our experience. The figure illustrates a lower threshold of de-
fects for more important or critical sofrware.

Figure 7-5, User Frustration Potential, illustrates a similar relationship when the function of
software is to support a user task. The more complex the task that software supports, the less
tolerant the user is of defects.

Recommendation for Cost Effective V&V

Use V&V and tune the V&V tasks based on perceived complexity and perceived importance
of the application.

Manage using V&V by setting criteria to advance from a phase using review or testing.

Emphasize early phase V&V tasks to remove persistent defects? and minimize exposure to
uncontrollable and expensive defect removal by testing.

Maintain records of results of evolutionary improvements in V&V and the development
process. Refine V&V efforts as needs change and the organization matures.

2-14

Sunsa, Ul PAOWIY S$193J3(] JO SN0 UOMIASUL"[—L 314

wAshs uonesdau]

nun

01

0T

113

oy

0s

09

2-15

pauaSY] $13333(1

1S SAS

SunsaL, wasAS 01 PIZIEULION SYSBL, A%WA JO WIS "Z—L 231y

IS L W

BLWUAN AYPO) IR AY SAAS AY SA4S

A SUS

0C

oy

09

08

001

SN Jo am31y

74

ovl1

091

081

2-16

1S SAg

paAoWaY 10N Jt 3seyd £q $193)3(Jo 150 "¢~ 21ndig

IS W

ISL nun

AYdpo) 133d Ay SAAS

AY SAAS

AYd SYUS

000C

000V

0009

0008

00001

000zt

000v1

00091

00081

——— ket oae LA i

i e

0000¢

ISBYJ IXAN UT PLIasU] $193)3(J JO 150D

2-17

High Importance

Rejection
Potential

Less Importance

Defects

Figure 7-4.User Rejection Potential

2-18

User
Frustration

Anger, Rejection

Indifference, Avoidance

)

~ /

Acceptance, Dependency

Number of Defects
Figure 7-5. User Frustration Potential

2-19

VALUE AND COST EFFECTIVENESS OF V&V

REFERENCES

1.

2.

Quantitative Aspects of Software Validation, Raymond J. Rubey, Joseph A. Dana and

Peter W. Ritche’ (IEEE Transactions on Software Engincering, June 1975 pp150-155)
Persistent Software Errors, Robert L. Glass (March, 1981 1EEE, Transactions on Software
Engineering)

2-20

»

VERIPICATION AND VALIDATION FOR EXPERT SYSTEMS:
A PRACTICAL HNETHODOLOCY

by

James R. Geissman
Abacus Programming Corporation
Van Nuys, California

INTRODUCTION

Expert systems will only be used in critical applications if they are carefully verified and
validated according to a product assurance methodology. The methodology should apply through the
expert system's entire lifecycle, from conception through design, programming and testing, and
should be based on objective verifiadle standards. This paper advocates basing the methodology on
prototyping for requirement development, design based on formally-defined knowledge processing
puuuu,ununduunmeuamusﬂmNnd“dpJuduuu,uwhuauuvuﬁuh
tion, and formal validation testing. A development organization or project can develop 8 product
* assurance plan to operationalize the methodology for any specific eavironment.

ELEMEXTS OF Vav

First, some brief definitionms. Verification means ensuring that an expert system has been
developed in the correct manner and does not contain technical errors. Validation is ensuring
that the expert system satisfies its users’ needs, or that 1t solves the right problem.[1]

Yerification and validation have clear meaning in the world of non-Al software engineering.
Verification is a determination that software has been developed in a “"formally correct” manner,
in accordance wvith a specified software engineering methodology. 1In practice this means demon-
strating that each stage in softvare development is a correct mapping of the requirements esta-
blished in the previous higher-level stage. To do this, one examines both the process and the
outcome. VWas a sound methodology was folloved, such as Structured Analysis or a design language
" with a pre-processor? Is the design reasonable and traceable? Are all the elements determined at

atage g_covorcd at stage n+!?

Validation means demonstrating that the completed prograa performs the functions in the
requirements specification and is usable for the intended purposes. Just vhat this entails de-
pends on vwhat the requirenents specify and how detailed they are. Very detailed requirements are
usually possible for applications like a boiler controller; for an expert system, however, the
limits of the possible, the potential, the essential, and an acceptable compromiss may be fuzzy
and continually evolving. The mere existence of an expert system V&V methodology may help to give
order to expert system requireaents by encouraging the early formalization of these concepts.

V&Y POR EXPERT SYSTEMS

Up to this time, V&V have not been commonly associated with expert systeas for a number of
reasons related to the way in vhich expert system seem to go beyond the assumptions of procedural
software engineering. A nuaber of specific probleas seem to inhidbit V&V for expert systems:

o If an expert systes project starts with with vague objectives, some may conclude that it
doesn't matter what the eventual systezm does, because anything is better tban nothing.

o Green and Koyea[z] cite a "vicious circle,” wvhere nobody requires expert syatem vav, so no-
body does it. Since nobody knows how to do it, pobody reguires it.

o Testable requirements are hard to find. Sometimes, attempts to write requirements for a
procedural program may already have failed, leading to the expert system project in the first
place. Even if there is a defimition, it may be as vague as, "Build a machine that will do

*just what Charlie does'"[3] or, "Build a pachine that vill make most of the hard undervrit-
ing decisions as vell as an experienced undervriter.”

o Expert systems and Al started within the scientific research communicty rather than engineer-
iag production. From this came an emphasis on evaluation of systems with a viev to determin-
ing the current state-of-the-art (which is assumed to be continually advancing). From the

research perspective, systems' pluses and minuses are important for what we can learn from
them to improve the next eystens[7]. The engineering view, by contrast, is more interested
in each system for jtself, and V&V is perforled to determine whether contractural require-
ments have been met and a system is safe to deploy.

o Common non-procedural architectures for expert systems do not result in code that bears any
resemblance to the execution sequence. Hence, techniques for tracing execution flow from an
examination of the code do not apply {although they may well apply to the inference engine

jtself). The declarative knowledge can be examined at face value, but how the system will
work can only be predicted with knowledge of how the jnference engine operates.

o A modularized, top-down hierarchically decomposed design msay be hard to achieve in some
expert system architectures. In & backward-chaining rule-based decision-tree system, for
exapple, the progressive decomposition of goals eventually arriving at specific questions

that can be resolved in terms of obtainable data is generally an achievable design strategy.
In other wmore fluid architectures, howvever, side-effects may be frequent and a continual
chain-reaction can result so that order is observed only at a aicro-level (e.g., a frame-
based system with procedural attachments vhere the procedures are user-vritten and do not

follov the basic paradigs).

o Expert systems (especially those that operate under uncertainty or with incomplete data) may
have so many possible atates as to make exhsustive teating infeasidle.

o Expert system environzents or shells tend to have complex user interfaces where inputs are
imprecise and hard to reproduce, such as pointing to a place on a picture with a mouse. This
nagnifies the potential solution space.

SOLUTION: A SIX-STEP APPROACH

The V&V methodology descrided here has aspects of classical software engineering, eapecially
top-dowa decomposition. It is based OB & four-stage development methodology going from problem
definition to initial prototype to expanded prototype (iteratively enhqncod) to delivery system.
Each stage results in vav artifacts.

Step One: Develop Initial Prototype Rnaultgggnig_Tbatablo Requirements

According to the definitions above, Y&V of any computer progras is not possible unless there
are requirsaents with which the program can be compsred. There is some controversy vhether
requirements can even be established for artificial intelligence programs, and some authors argue
that there are fundamental probless with the applications most 1ike buman thinking such as natural
language processing(4]. Hovever, expert systems differ from some other AI applications in that
they are more proble--orientcd rather than proco-u-orientod, and allov the specification of the
attridbutes of an acceptable or correct solution. Even, "Do just vhat Charlie does™ is the
beginning of requiresents; the probdlenm is to refine it into a series of testable statements. This

V&Y methodology provides a means of doing Jjust that.

PREGEDING PAGE BLANK NOT FILMED
345

Requirements can be developed from the jterative prototyping methodology, similar to the
spiral model of software developaent. Initially, the problem definition stage results in some
“ely “Charlies.” The next stage is to quickly build & prototype of a mesningful subset of the
,blem, folloved by a stage of iteratively enmbancing the prototype to deal vith more and more of
the problem. The initial and enhanced protoiypes ar:? followed by the delivery system, for which
the requirements are developed. In thia methodology, the prototypes serve as the basis for writ-
ing requirements. Even vhere the prototypes are incomplete or go slightly astray, developing them
gives a clear insight into the problem from a knovledge engineering perspective. This insight
enables clear and testable statements .about the expert system in terms of what it will actually do
(even at a detailed internal level).

Step Tvo: Design in Terms of Formal Paradigas

A crucial step in building a testable system is to ensure that the code-level artifacts are
structured in order to be analyzed in a meaningful way. This is part of the design for testing
principle.]

To take an analogy from procedursl software, consider checking a prograa by examining the
code. If the code is single-entry, single-exit, structured and well-documented, a desk-check or
walkthru can result in s level of confidence in the program’'s correctness. With self-modifying
"spaghetti” code that shares global data vith other processes running in parallel, even a aimute
code-level examination does not lead to confidence in the prograam, because there is no vay to tell
what state the code will be in when it runs.

In expert systems, "structured design” can mean the following:

o Formally define knowledge processing paradigas. These can include inheritance networks,
backvard- and forwvard-chaining production systeas, and goal-driven logic (6.8 PROLOG), all
of which are among the most straightforvard of the coamonly-used paradigas. Because these
paradigms represent discrete eveat networks rather than the equivaleat of "spaghetti,” the
future state of the system can be expreassed as a function of the initial state and a number
of transitions, and tools can be built to analyze the logical consistency of a knowledge base
expressed in terms of one of the paradigsms. Stachowitz has described EVA--the Expert Systens
Validation Associate--an automated tool for checking certain paradigms that follovs this

logic{5].

o Vhere reasonsble, design using the limited set of certified paradigas. This is Procrustean
and might be limiting at first, but effort directed to specifying and checking out new para-
digas vill pay off over time.

o Independently perfors vav on any escapes to procedural code. These may introduce problems,
especially if they result in modifications to the problea space (for example, changing work-
ing oemory in a production systes, OF modifying the value of an item in an inheritance net-
work).

Step Three: Certify Inference Engines

Certifying an inference engine means testing it to determine vhether it in fact carries out
one or more of the knowledge processing paradigms specified in step two. 1 this can be proved,
then a certain amount of knowledge base verification can be achieved by code inspection of the
knowledge base. .

Vithout a verified inference engine, the only sort of V&V possidble is black box testing, or,
giving the expert systes & set of probleas and seeing vhat it does. Although black box testing is
a necessary part of vVav, it is not feasible to test a non-trivial expsrt systea exhaustively in
this way.

346

ERSPRT L

RN BET IET RS P T ot .
e i) ."!},"

o

_ Certification of inference engines might involve the following steps:

o Formal definition of an inferencing paradige in a relatively abstract representation (an
“ANSI standard”).

o Specification of how a given inferencing paradigm is represented in terms of a given expert
system tool.

o Development of test suites for the peradigm in an abstract representation.
o Translation of the test suites to the language of the particular tool.

o Performance of certification tests for particular paradigns.

o Checking that all debugging or explanatory information provided by the inference engine
(e.g., current agenda, contents of working pemory), is in fact correct and can be relied upon
ijn later verification stages. Many expert systea shells have very povwerful graphic-based

explanation facilities, and these can help the developer and tester immeasurably. It is
necessary, however, to confirm that they do what they seem to do.

Inductive knowledge acquisition tools are adjuncts to inference engines, and may be verified
similarly. Where & wvell-understood technique is followed, the tool can be checked against stan-
dard benchmark cases. For example, Quinlan‘s ID3 algorithm--oOr something similar--seems to be
incorporated in several commercial products that derive decision trees from case history matrices

pf criterion data and resultant classifications.

A potential source of problems is where standard techniques are "jmproved” by new methods
that remain proprietary and are not disclosed for commercial ressons. For exanple, one inductive
knowledge acquisition tool seems to be following the ID3 algoritham, but the documentation suggests
the tool is somehow better than standard techniques yet nowhere states how it works. The documen-
tation associated with several expert system shells and inductive knowledge acquisition tools uses
seni-mystical terms that leave a skeptical reader in some doubt, and is pot augmented by a techni-

cal appendix that spells out details.

Step Four: Design for Verification

Initial design centers around a high-level statemsent of what knowledge will be used, where it
vill come from, and vhat the xnowledge vwill look like (how it will be represented). Verification
at this level consists of determining that the design covers each of the requirements. I1f the
requiresents and prototype are not sufficiently advanced to permit the developunent of & high-level
design, this is a sign that they require more work.

The principal elements of an expert systenm high-level design are statements of the following:

o How each individual requiresent will be dealt with.

o The knowledge processing parndign(a) to bs followed. These should be selected from those
supported by certified inference engines. .

o The principal factual knowledge that the processing Telies on.

o The vay in which the overall solution is broken into subproblems, the transitions from oume
subproblem to the next, communication between subproblems and how this structure is repre-
sented (e.g., the tree of goals in a backvard-chaining systez; blackboarding protocola).

o All interactions with the outside wvorld, ipcluding hov needed data will be obtained (0.8
asking the user, reading devices oOr querying & database sy-ton).

347

0 VWhat basic assumptions underly the solution and what are the limits of validity or boundary
conditions. This information corresponds to the assertions of invariants that help prove the
correctness of procedural programs. Examples are the range of conditions or inputs under

which the analytical assumptions are valid.

o The way the current state of the problem or state of the world within the expert system will
be represented, in general terms.

Step Pive: Verify Knowledge Base

After the high-level design is completed, development (and verification) may go to a lower-
level design vith more detail, or it may go directly to the code. Because expert aystem languages
and shells are more expressive than most procedural languages, it is often not necessary to do a
detailed design step, and the next V&V activity is to verify the knowledge base. Verification
should be done statically, with the code alone, as well as dynamically by observing the behavior

of the system.

Operationally, one goes over the knowledge base to see if it matches the high-level design,
and checks each individual rule/fact/object/procedural attachment/goal for correctness. This
checking should be done by persons other than the developers. (See the article by Marcot for some
suggestions.) The following are some specific things to check:

o Confirm that the knowledge base conforms to one of the certified paradigms. (This is most
easily accomplished by writing the knowledge base in the abstract paradigm definition fora in
the first place and mechanically translating it to the tool's input form.)

0 Verify subproblem structure and verify each subproblem independently. This means confirming
that a solution to the subproblems is a solution to the larger problea and that the boun-
daries of the subproblems subsuae the wvhole probles space.

o Confirm that the knowledge is correct or at least reasonable in a static and individual
sense. This aeans confirming the "facts”, the relationships expressed in rules or other
vays, the limita or boundary conditions and the overriding heuristics or meta-rules that

guide the system's operation.

o Ildentify the portions of the knowledge base that are not elements of the paradigm, such as
escapes to C or calls to s database system. These can be individually verified in the normal

software engineering manner.

o Esbed sdditional demons to signal failure of the boundary conditions (rules that fire when
the systea gets places it should never be).

The steps up to this point should be repeated whenever a nev level of functionality is intro-
duced, for example when a prototype is expanded to deal with a nev prodblem or vhen the initial
prototype is throwa avay and a replaced vith a new knowledge representation scheme, according to

the spiral model.

Step Six: Perform Pormal Validation

Even if each step along the vay has been checked out, it is necessary to test the behavior of
the integrated systes, bdoth to discover errors that only appear at ¢this point, and to cbheck
against the user's "real needs.” .

The steps in validation, borroving froa procedural V&V, are as followvs:

o Determine validation criteria. This seems like an obvious first step, but it is frequently
overlooked. Marcot proposes the following criteria: accuracy, adaptability, aedequacy,
appeal, availability, breadth, depth, face validity, generality, precision, realism, reliab-
ility, resolution, robustness, sensitivity, technical and operational validity, Turing test,
usefulness, [plain] validity, and wholemess[6].

348

0°'Keefe, Balei and Snith[1] suggest more formal statistical testing, which is especially
anﬂuemraduﬁﬁuﬁmanunﬂneuulﬁmkmnpmwﬂhsnnmpmﬁ“dnd
the outcome can be scored as right, wrong or somevhere between. For & system that performs a
different kind of function, such as Ri that configures VAXes oOr EXCABL that cables Space
Shuttle payloads, & nupber of possible solutions might be right or "good enough,” which com-
plicates scoring. Gaschnig, et. al. suggest a punber of other evaluation standards[?].

One interesting criterion is that an expert system should "act like an expert” and demonstra-
te deep knowledge, rather than the shallow recipe knovledge generally associated with them.
See [aﬁ and [9] for a fuller discussion of what it means to be an "expert.”

For any specific system, the criteria will be derived from the intersection of the criteria
mentioned above with the systen's particular requirements, as described in the requirements
document and/or overall concept document.

Determine objective metrics for the selected criteria. This is a difficult step, and some
appealing criteria may have to be dropped because of difficulty in coming up with a meaning-
ful objective measure or surrogate.

Specify the realms or sets of input data that the expert system gust correctly handle.

Develop a library of test cases and scenarios specific to the problem and perform regression
testing when the knovledge base is modified. As with any softvare testing, testers should
attempt toO desonstrate the systen's proper response to normal situations, and also attempt to
induce system errors. (A good test is one that finds an error.) The test cases should
include a mixture of obvious ones, more subtle yet still “average” cases, boundary condi-
tions, meaningless combinations of valid and invalid data, load testing, and obvious error
conditions outside the system's 8scope of validity. Specific cases are derived from the
requirenents, the design, and known quirks of the implementation environmeat. The results of
these tests should be evaluated according to the criteria and metrics described above.

Develop test harnesses and drivers to administer the tests automatically. 1f possible, have
the results, in terms of the metrics, automatically registered in a database that is part of
the development system, vhere they will be associated with the specific software changes they
correspond to. As part of the tests, have systes performance re-validated by the domain

expert(s) involved in the development.

Have system performance validated by an independent panel of experts not connected with the
system development effort.

Use the expert system in parallel with existing systems and non-automated methods for &
period of time and compare results.

Start the validatios testing early, sved when it is clear that only a subset of the functions
have been implemented, and continue to perfora regression testing as the system is elabdbo-
rated.

Maintain detailed information o1 system perforaance as the knovledge base is elabdorated,
because interactions in working memory can cause substantial degradations in performance vith
seemingly insignificant increases in complexity. I¢ performance is severely affected, 8
high-level redesign such as a revised subproblem structure to limit the focus at any one time
may be called for. Vhere the requirements demand, perfornm Joad testing with realistic rates

of inputs.

349

From Here to There: Vork Yet To Be Done

The methodology argued here is not yet ready to use; some research and specification has 1ty

se done, including the following:

o Formal definition of paradigms. This has already been done at least in terms of specificu.

tions for developing inference engines for such paradigms as forwvard- and backward-chaining
PROLOG, freames and inheritance networks. Other more versatile concepts like objects need t.:,
be defined in a way that links them to these. An community-wide body vould be appropriate
for this task.

Certification of inference engines. This is like certifying a compiler. Inference enginen
that follow the most straightforward paradigms {e.g., backward-chaining such as many or basi,
forward-chaining production systems such as OPS5, OPS83 or CLIPS) are the most likely cnncu;
dates. Potentially, multi-paradigm tools like NEXPERT or ART could be incrementally certj.

fied for the different paradigms.

A systematic specification of paradigms would resolve some issues influencing system perfor.
mance that are currently rather muddy, especially among PC-based shells. For example, con.
sider how undefined variables are treated in searching; Consider a backvard-chaining she)}
that is programmed to perform a classification or interpretation problea (such as, evaluating
household characteristics to decide whether to graant an insurance policy). Some eomnly'
used shells that could do this include Insight 2+ (PRL) and Personal Consultant. Differont
shells are likely to perform differently in the face of unknown data: some systems ask tl.
user for the value, vhersas others may avoid branches including unknowns and search othor
regions of the decision space, if possible. Among those that query the user, there may uo
differences in the order in which facts are collected. These matters are certainly noy
spelled out in the documentation of most systems the author is familiar vith, but cup

influence results.

CONCLUSION

FPormal V&V is necessary for acceptance of expert systems into eritical aresas. V&V i3

straightforvard activity that parallels many of the steps undertaken in development and fitn
especially easily into an iterative prototyping development methodology. The recommended approuch
to expert system V&Y centers on well-defined paradigms and certified inference engines, which
permit both static and dynamic verification to be undertaken with confidence.

[1]
(2]
(5]
(4]
(5]
(6]

0'Xeefe, R.X., O. Balci and E.P. Smith, "Validating Expert System Performance,” IEEE Expert,
Vinter 1987.

Creen, C., and M. Keyes, “Verification and Validation of Expert Systems,” Workshop on -Know-
ledge Based System Verification, NASA/Ames, April, 1987. ‘

Culbert, C., G. Riley and R.T. Savely, "Approaches to the Verification of Rule-Bssed Export
Systems,” SOAR Confersnce, NASA/JSC, August 1987. <

Partridge, D., and Y. VWilks, "Does Al Have A Nethodology Differsat from Software Engi.
neering?” Computing Research Lab, New Mexico State University, 1985.

-

Stachowitsz, R., et. al., “"Building Validstion Tools for Knovledge-Based Systems,” SOAR Cone
ference, KASA/JSC, August 1987.

Marcot, B., "Testing Your Knowledge Base,” Al Expert, July, 1987.

350

(7]

(8]
[o]

Gaschnig, J., P. Klahr, H. Pople, E. Shortliffe, and A. Terry, “Evaluation of Expert Systems:
Issues and Case Studies,” in F. Hayes-Roth, D. Waterman and D. Lenat, eds., Building Expert

Systems, Reading, Mass: Addison-Wesley, 1983.

Berger, P., and T. Luckmann, The Social Conmstruction of Reality, Carden City, NY: Doubleday,
1967.

Svartout, W.R., and S.¥. Smoliar, “0on Making Expert Systems More Like Experts,” Expert
Systems, August, 1987.

351

VERIFICATION ISSUES FOR RULE-BASED EXPERT
SYSTEMS |

Chris Culbert, Gary Riley, Robert T. Savely
Artificial Intelligence Section - FM72
NASA/Johnson Space Center
Houston, TX 77058

»

ABSTRACT

Expert systems are a highly useful spinoff of the artificial intelligence research
efforts. One maijor stumbling block to extended use of expert systems is the lack of
well-defined verification and validation (V&V) methodologies. Since expert systems
are computer programs, the definitions of "verification" and "validation" from con-
ventional software are applicable. The primary difficulty with expert systems is the use
of development methodologies which don't support effective V&V. If proper techniques
are used to document requirements, V&V of rule-based expert systems is possible,
and may be easier than with conventional code. For NASA applications, the flight
technique panels used in previous programs should provide an excellent way of
verifying the rules used in expert systems. -There are, however, some inherent
differences in expert systems that will affect V&V considerations.

INTRODUCTION

Expert systems represent one important by-product of Artificial Intelligence
research efforts. They have been under development for many years and have
reached commercial viability in the last three to four years. However, despite their
apparent utility and the growing number of applications being developed, not:all ex-
- pert systems reach the point of operational use. One reasoh for this is the lack of well
understood techniques for V&V of expert systems.

Developers of computer software for use in mission or safety critical applications
have always relied upon extensive V&V to ensure that safety and/or mission goals
were not compromised by software problems. Expert system applications are
computer programs and the same definitions for V&V apply to expert systems.
Consequently, expert systems require the same assurance of correctness as

conventional software.

Despite the clear need for V&V, considerable confusion exists over how to
accomplish V&V of an expert system. There are even those who question whether or
not it can be done. This confusion must be resolved if expert systems are to succeed.
As with conventional software, the key to effective V&V is through the proper use of a
development methodology which both supports and encourages the development of
verifiable software. i '

THE COMMON EXPERT SYSTEM DEVELOPMENT METHODOLOGY

Most existing expert systems are based upon relatively new software techniques
which were developed to describe human heuristics and to provide a better model of
complex systems. In expert system terminology, these techniques are. called
knowledge representation. Although numerous knowledge representation techniques

are currently in use (rules, objects, frames, etc) they all share some common
characteristics. One shared characteristic is the ability to provide a very highj level of
abstraction. Another is the explicit separation of the knowledge which descr%es how
to solve problems from the data which describes the current state of the world. |

Each of the available representations have strengths and weaknesses. With the
current state-of-the-ant, it is not always obvious which representation is most
appropriate for solving a problem. Therefore, most expert system development is
commonly done by rapid prototyping. The primary purpose of the initial prototype is to
demonstrate the feasibility of a particular knowledge representation. It is not unusual
for entire prototypes to be discarded if the representation doesn't provide the proper
reasoning flexibility.

Another common characteristic of expert system development is that relatively
few requirements are initially specified. Typically, a rather vague, very general
requirement is suggested, e.g., "We want a program to do just what Charlie does".
Development of the expert system starts with an interview during which the knowledge
engineer tries to discover both what it is that Charlie does and how he does it. Often
there are no requirements written down except the initial goal of "doing what Charlie
does". All the remaining system requirements are formulated by the knowledge
engineer during development. Somstimes, the eventual users of the system are
neither consulted nor even specified until late in the development phase. :As with
conventional code, failure to consult the intended users early in the development
phase results in significant additional costs later in the program.

So where does all this lead? The knowledge engineer is developing one jor more
prototypes which attempt to demonstrate the knowledge engineer's understanding of
Charlie's expertise. However, solid requirements written down in a clear,
understandable, easy to test manner generally don't exist. This is why most expert
systems are difficult to verify and validate; not because they are implicitly different from
other computer applications, but because they are commonly developed in a:manner
which makes them very ditficult or impossible to test. - .

NEW APPROACHES TO DEVELOPMENT METHODOLOGIES '

From the preceding section, it should be clear that the problem is the use of
development methodologies which generally do not generate requirements which can
be tested. Therefore, the obvious solution is to use a methodology which will produce
written requirements which can be referred to throughout development to verify
correctness of approach and which can be tested at the end of development to
validate the final program. ;

Unfortunately, it's not that simple. Some expert systems can probably be
developed by using conventional software engineering techniques to create software
requirements and design specifications at the beginning of the design phase [1]). How-
ever, the type of knowledge used in other expert systems doesn't lend itself to this
approach. It is best obtained through iterative refinement of a prototype which allows
the expert to spot errors in the expert system reasoning before he can clearly specify
the correct rules. r‘

The goal of any software development methodology is to produce reliable code
that is both maintainable and verifiable. A software development methodology for
expert systems must serve a similar purpose as one for conventional software.
However, there are some differences between expert systems and conven{ona!
software which will affect the development methodology. Development methodologies
for expert systems are discussed in more detail in another paper by the authors [2].
Suffice to say here that some kind of development methodology must be chosen and

applied to support effective V&V.

MAKING THE REQUIREMENTS WORK

Once we accept that requirements and specifications must be written and a
methodology for how and when to write them has been adopted, the actual work of
verifying and validating the program must be done. A very appropriate technique
would be a direct derivative of the methods used to develop procedures, flight rules,
and flight software for the Apollo and Shuttle programs. This technique consists of
Flight Technique Panels which regularly review both the procedures for resolving a
problem and the analysis techniques used to develop those procedures.

If expertise is not readily available from past experience, the analysis efforts
typically use high fidelity simulations based on system models to derive and evaluate
control parameters. If expertise is available, the knowledge is reviewed by the panel
and placed in the appropriate context. The panels consist of system users,
independent domain experts, system developers, and managers to ensure adequate
coverage of all areas of concern. In previous programs, the typical output of such a

panel was a set of flight rules describing the operational requirements for a system.

Sometimes these flight rules were translated into computer programs (typically as
decision trees) and embedded in the onboard or ground computers. An additional
vesification step was needed to guarantee that the flight rules approved by the panel
were properly coded. More often, computer limitations caused the flight rules to remain
in document form used directly by flight controllers and mission crews. '.

For future programs, many of the flight rules which come from the [Flight
Technique Panels can be coded directly into expert systems. Expert systems
developed in this manner will have undergone extensive verification through the panel
review. They should also prove easier to verify in code form because the rule
language will allow the program to closely resemble the original flight rule. :

Programs of the complexity and size with which NASA regularly deals make this
approach mandatory. Smaller programs generally will not require the resources or
effort involved in verifying a system to this extent. The size of the panel and the length
of the review process can be scaled down to something appropriate for the complexity
and size of the application. For some applications, the panel approach could look very
similar to independent code review techniques. '

Exhaustive testing through simulation remains the most effective method
available for final validation. However, for any system of reasonable complexity,
exhaustive testing is both prohibitively expensive and time consuming. Space Shuttle
applications typically used extensive testing with data sets representative of the

anticipated problems or failure modes. This method is not guaranteed to eliminate all
software bugs, but it can prevent the anticipated problems. If used prqoperly,
representative testing can eliminate enough problems to make the software
acceptable for mission and safety critical applications.

The panel approach to verification discussed above is very effective at ensuring
that the knowledge in the expert system is both correct and complete. Verification of
conventional software also covers feasibility, maintainability, and testability. These
verification efforts are generally done early in the design phase and should also be
done for an expert system. The coded rules must also be examined to ensure that the
- consistency and completeness of the design is properly incorporated in the software.

Some of this work can be done automatically. Testing a rule language for
completeness and consistency may actually be easier than testing conventional
programs. The explicit separation of knowledge elements from control and data
elements may allow relatively straightforward analysis of the rules by automated tools
[3]. If automated methods are not used, other standard methods such as code reviews
and manual examination of the rules may aiso be comparatively easy, again due to
the independent nature of the knowledge elements. They can be done by the whole
panel, or more likely, smalil teams of people drawn from the whole panel. -

Feasibility of knowledge representation is usually fully tested in the early
prototypes, but the feasibility of other elements of the expert system, such as
performance, user interfaces, data interfaces, etc. must also be verified. The use of
rapid prototyping can be extended from testing representation to testing some of 'these
areas as well. lterative development can go a long way to ensuring that the final
system truly meets the user needs in these kind of areas.

Finally, the requirements must be examined to ensure that they are able.to be
tested. They should be specific, unambiguous and quantitative where possible.
Obijective requirements will aid in the development of rigorous test cases for final
validation. A test plan should be written which discusses how the final expert system
will be tested. :

OTHER ISSUES FOﬁ EXPERT SYSTEM V&V

There are other differences between between conventional software and éxpert
systems, and those differences will affect V&V efforts. Some of the differences are
discussed in reference [4] and summarized below.

Veritying the Correctness of Reasoning

Verifying that an expert system soives a problem for the right reasons is
sometimes as important as getting the right answer. For a rule-based expert system,
identifying all possible paths to a solution is very difficult. Therefore, it is important to
ensure that the expert system has gotten the right answer for the right reasons.

VEN RIS S

Verifying the Inference Engine

The inference engine in a rule-based expert systems is a completely sep%rate
piece of code anc can be fully verified independently from the rest of the ekpert
system. :

Verifying the Expert

This question is automatically resolved as long as the expert system is validated.
The panel approach discussed in this paper provides continual feedback on the
correctness of the experts knowledge.

Real-Time Performance

Most conventional programs provide performance "guarantees” through
extensive simulation of the expected performance environment. Expert systems can
provide the same kind of performance "guarantees”. Some kinds of conventional
programs are analyzed at the machine instruction level to specifically determine the
amount of time required to process a given data set. Achieving the same kind of
capability in a rule-based expert system is more difficult, but can be done for a given
data set entered in a specific sequence.

Complex Problems with Multiple Experts

The panel review method already discussed here is clearly the appropriate
method for resolving a problem of this type. The review process used by the panel will
allow inputs from any number of domain experts and will also establish the methods of
validating system responses. . :

Traceability of Requirements

Tracing requirements after they have been coded in rules may be more difficult
than for conventional code, particularly when hybrid representation techniques are
used, i.e. when both rules and objects are used to satisfy the program's requirements.
This is an area that needs further consideration. ?

i

Verifying the Boundaries of the Expert System Domain

V&V of an expert system must be carefully aimed at identifying the boundaries of
a problem since the experts sometimes can not readily do so. V&V must also ensure
that the expert system fails gracefully in these circumstances. :

There are additional issues not discussed in reference [4]. These are discﬁssed
more fully below. .

Reasoning under Uncertainty .

Some expert system applications deal with incomplete, inconsistent, or uncertain
information. Humans do a very good job of reasoning under uncertainty, but it can be
very difficult to develop consistent models which exactly duplicate this process.
Numerous methods have been developed to allow expert systems to deal with this
type of information, such as fuzzy logic, probability methods like Bayes theorem,
Dempster-Schafer theory, certainty factors, etc. The nature of how humans use this
type of information makes it very difficult to verify in an expert system. Ditferent people

may give different answers when presented with the exact same information. V&V
efforts must focus on two things; (1) verifying that the answers suggested in uncertain
situations are 'acceptable’ answers. The definition of ‘acceptable’ may be problem
dependent, and (2) if uncertain information is combined, the method used t provide a
certainty factor to the result must be consistent. -

"Maintaining a verifiable system

: Long-term maintenance of an expert system is a poorly understood topic,

primarily because there is little actual experience in this area. Soloway, et al. [5]
discuss some of the difficulties in maintaining XCON, one of the largest and oldest
expert systems in use today. They point out that XCON is a very dynamic system, with
extensive changes occurring regularly. As with conventional software, most expert
systems will change and V&V must be performed each time the modified system is
released. The nature of almost all rule-based languages makes true modularization of
code more difficult than with conventional software. Therefore, rule-based systems
presently require complete retesting with every release, using a library of test cases.
Good programming practices such as using explicit control features and simple rules
are important aids, but may not be sufficient to prevent extensive retesting. This area
will be better understood when more applications reach maintenance stages.

CONCLUSIONS

Verification and validation of expert systems is very important for the future
success of this technology. Software will never be used in non-trivial applications
unless the program developers can assure both users and managers that the software
is reliable and generally free from error. Therefore, V&V of expert systems must be
done. Although there are issues inherent to expert systems which introduce new
complexities to the process, verification and validation can be done. The primary
hindrance to effective V&V is the use of methodologies which do not produce testable
requirements. Without requirements, V&V are meaningless concepts. An extension of
the flight technique panels used in previous NASA programs should provide both
documented requirements and very high levels of verification for expert systems.

H
!

REFERENCES

i1

(2]

3]

[4]

5]

Bochsler, D.C. and Goodwin, M.A., "Software Engineering Techniques Used to
Develop an Expert System for Automated Space Vehicle Rendezvous”,
Proceeding of the Second Annual Workshop on Robotics and Expert Systems,
Instrument Society of America, Research Triangle Park, NC., June 1986,

Culbert, C.J., Riley, G., and Savely, R.T., "An Expert System Development
Methodology Which Supports Verification and Validation®, to be published.

Stachowitz, R.A. and Combs, J.B., "Validation of Expert Systems”, Proceedings
Hawaii International Conference on Systems Sciences, Kona, Hawaii, January 6-
9, 1987.

Culbert, C.J., Riley, G., and Savely, R.T., "Approaches to the Verification of Rule-
based Expert Systems", Proceedings of SOAR'87: Space Operations-
Automation and Robotics Conference, Houston, TX., August 1987.

Soloway, E., Bachant, J., and Jensen, K., "Assessing the Maintainability of XCON-
in_RIME: Coping with the Problems of a VERY large Rule-Base", Proceedings of
AAAI-87, Sixth National Conference on Artificial Intelligence, Seattle, WA., July
1987.

KBS V&YV - State-of-the-Practice and Implications for V&V St_Lmdards'

David Hamilton, Keith Kelley & Scott French
IBM Federal Sector Division
3700 Bay Area Boulevard
Houston, Texas 77058

Chris Culbert
NASA/Johnson Space Center
Software Technology Branch/PT4
Houston, Texas 77058

Abstract

The majority of the work in knowledge-based system ver-
ification and validation (KBS V&V) has focused on
developing techniques and concepts for performing V&V
on expert systems. Little information is available on
what V&V practices are currently in use by expert system
developers and how current KBS practices compare to
what is typically required on large systems. This paper
summarizes the results of a survey whose purpose was to
begin documenting some of the experiences and problems
KBS developers have encountered. It also summarizes
the results of analyzing the V&V requirements for a spe-
cific program (Space Station Freedom). The results of
the survey suggest that current practices can be improved
while the results of analyzing Space Station V&V
requirements show that the conventional software state-
of-the-practice is. not completely applicable to KBS
V&V. The results have implications for many large pro-
grams and for KBS V&V research. :

1 Elements of this paper have alrcady been published in {9].

Introduction

Knowledge-based systems (KBS)? are in general use in a
wide variety of domains. As reliance on these types of
systems grows, the need to assess their quality and
validity reaches critical importance. As with any soft-
ware, the reliability of a KBS can be directly attributed
to the application of disciplined programming and
testing practices throughout the life-cycle. However,
there are essential differences between conyentional soft-
ware and knowledge-based systems, both in construction
and use. The identification of how these differences
affect the verification and validation (V&V) process and
the development of techniques to handle them is the
basis of work in this field. ;

Much of the work in KBS V&V has focused on devel-
oping conceptual approaches and postulating different
techniques for performing some or all aspects of V&V
on various types of KBS or expert systems (ES) [3].
Very little work in this field has demonstrated the useful-
ness of proposed techniques on operational KBS. Even
more importanty, since effective V&V must be applicd
throughout the life-cycle, there has been almost no case
study work in applying disciplined software V&V princi-

2 Or expert systems. Although there is a growing acceptance of different definitions for knowledge-based systems and cxpert systems,
we will use the terms interchangeably in this paper. The differences between KBS and expert systems do not significantly affect the

V&V process.

ples throughout the development of an operationai KBS.
The long term goal of our work is to develop guidelines,
standards, tools, and techniques for V&V of all KBS
applications which many be used in the Space Station
Freedom Program (SSFP). As a precursor to deter-
mining the applicability or usefulness of many of the
proposed KBS V&V techniques, it is important to
develop an understanding of what V&V practices are
commonly in use today and how proposed techniques
can improve upon those practices.

[t has been widely claimed that few expert systems are
subjected to the same level of V&V that conventional
software routinely undergoes [4]. However, this prac-
lice has not been well documented. More important for
our purposes, little documentation? exists which describe
the problems associated with KBS V&V from the devel-
oper or user’s point of view. The specific purpose of
our survey was to begin documenting the experiences
and problems KBS developers have encountered in pers
forming V&V on their systems and relate those prob-
lems to the kinds of issues KBS V&V researchers
consider important. The overall strategy for determining
the state-of-the-practice was to determine how well each
of the potential expert system V&V issues are being
addressed and to what extent they have impacted the
development of expert systems. Our approach was to
develop a set of survey questions for both KBS devel-
opers and users and then to follow that survey with
selected interviews.

Because our ultimate goal is to develop guidelines, etc..

for SSFP, we compared the results of our survey to the
existing SSFP V&V requirements. We aiso analyzed all
the SSFP V&YV requirements to determine their general
applicability to KBS V&V.

In this paper, we first summarize the results of this
survey* and then we summarize the results of analyzing
SSFP V&YV requirements.

Survey Results

A total of 70 people, 93% of which were developers,
responded to the survey concerning a variety of
knowledge-based systems. Seventy percent of these
systems were operational and the remainder were con-
sidered prototypes (although some of these “prototypes”
had users). These . systems covered a range of
criticalities and sizes, requiring as littlc as one person-

3 An exception is documented in (8]

4 A more complete discussion of the survey results appears in [9].

month of development cffort to as much u; two hundred
person-month~ of development Most /(75%) of the
systems were concerned with diagnosis, primarily in the
aerospace field (73%).

Questionnaire Results

Much of the results can be derived by simply calculating
the fraction of respondents that answered a question in a
certain way. The following is a short summary of each
type of information gathereds.

Performance Criteria:

Thirty-nine percent estimated that the expert system per-
formed with an actual accuracy of less than 90% and
54% estimated an accuracy of less than 95%. Most
(50%) esiimated the problem space coverage between
60% and 95%. In comparing the accuracy of the
expert and the expert system, most (79%) expected the
expert system to at least as accurate as the expert Yet,
the actual systems were often (75%) estimated to be less
accurate than expected and also (62%) less accurate
than the expert. Users, more often than developers, esti-
mated the expert system as being less accurate than
expected and less accurate than the expert.

Requirernents Delinition:

Seventy-five percent indicated that expert consultation
was a basis for determining the behavior:of the system.

_ More revealing is that for 52% of the systems surveyed,

there were no documented requirementsi Forty-three
percent indicated that prototypes or simdar tools were
used for requirements. Forty percent had" medium diffi-
culty in generating requircments, 35% said the require-
ments were hard to develop, 25% said the requircments
were easy to develop. Fifty-eight percent of developers
had a high level of contact with experts during devclop-
ment. .

Development Information:

The most frequent (40%) life-cycle model used is the
Cyclic Model (repetition of Requiremnents, Design, Rule
Generation, and Prototyping untl done). Howcver,
22% of the respondents stated that no model was fol-
lowed. Most development was done with an expert

5 Unless otherwise noted, the percentages shown are the percentage for all the responses, both developer and user combined.

system shell (CLIPS and others), and the predominant
Interface Code was C and LISP. Applications were rea-
sonably large, requiring an average of 23 person-months
to develop. Developed systems were not reported to be
particularly sensitive to change (77% said changes only
occasionally caused an unexpected behavior).

v&v Acﬁviﬁés Performed:

Most V&V activities relied on comparison with expected
results and checking by the expert. Sixty-six percent
used functional testing and 44% used structural testing.
Fifty-nine percent had the domain expert check the
knowledge base. On average, 24% of the development
was spent on V&V. While all (100%) of the users rated
V&V of expert systems as hard, the response from
developers varied. Thirty-four percent of the developers
said the V&V effort was of medium difficulty while 27%
said it was hard and 33% said it was easy, 5% said it
was impossible. Significantly, each V&YV technique was
used as the sole V&V technique in at least one project.
Also, in general, there were wide ranging uses of V&V
techniques; each technique was used by many projects.

V&V Issues Eﬁéountcud:

The known issues most often cited as problems were:
test coverage determination (63%), knowledge validation
(60%), real-time performance analysis (33%), and
problem complexity (40%). Other problems cited were:
modularity (27%), configuration management (20%),
certification (11%), and understandability (10%). The
least cited problem was analysis of certainty factors
(only seven respondents indicated that certainty factors
were used). Every known issue was ciled by at least one
respondent. The expected system use varied widely
(3-2000), while actual system use was relatively good.
However, less than half of the respondents provided
information, suggesting that actual use was much lower
than reported. Of those who responded with an
opinion, 96% felt that their expert systern was at least as
reliable as a typical conventional sofiware system, and
51% felt it was more reliable.

Interview Results

In addition to acquiring written responses 1o the survey
questions, interviews were performed to gather addi-
tional data and to clarify questions concerning the
wrilten responses. Additional information from these
interviews are summarized in this section.

Structural Testing:

Based on tne survey results, a commonly used evalu-
ation approach was the use of structural testing. This
was surprising because the common perception among
KBS researchers is that many common forms of struc-
tural testing are relatively difficult to apply to expert
systems. From the interviews, we learned that although
some projects did attempt to measure the actual test
coverage (i.e., percentage of rules executed during
testing) many others did not actually measure the cov-
erage. Instead, they attempted to develop test cases that
would cover all of the knowledge base (or at least the
important parts) but made no attempt to measure how
well the knowledge base was actually covered. Also,
there appeared to be no attempt to cover interactions
between knowledge base elements (e.g., rule inter-
actions). Generally, each element was tested as if it
were an independent piece of the knowledge base.
Some knowiedge base developers feit that more formal
structural testing would be too much effort and would
hinder the development process too much. The inter-
view results suggest that although structural testing was
used, it was a very weak form of structyral testing (at
least compared to, say, branch coverage:in procedural
software testing). '

Experts Developing Expert Systems:

It appeared that the expert was heavily relied upon to
aid in evaluation of the knowledge base; this subject was
probed more deeply during the interviews. The devel-
opers felt that a close interaction between the expert and
the knowledge base developer was mandatory to suc-
cessfully develop an expert system. This,is not a sur-
prising result and it has been discussed a‘ length in the
literature [1]. Many KBS developers feel this inter-
action is so important that they think the best approach
is simply to have the expert develop the system. Though
it is important for a knowledge engineer to understand
the problem domain and to thoroughly rcpresent that
domain [6), it is generally accepted that the domain
expert should not be the sole developer of an cxpert
system$. There are many problems associated with the
development of an expert system by a domain experL
Experts often use knowledge that is so highly compiled
and implicit that they have difficulty defining that know:-
ledge explicitly (so a machine can use it). ; Furthermore,
collection of domain knowledge from “introspection™ is
generally held in doubt by psychologists [3): that is,
cxperts often don't solve a problem the way that they
think they do. Finally, building expert systems oftien
involves building highly complex software systems,
systems that require skills and training, that domain
cxperts scldom have. Some of these issues were recog-
nized by at least one interviewee who felt ‘that when his
group begins to tackle more sophisticated problems, they

would need developers with better-developed software
and knowledge engineering skills.

Requirements Writing and the Conventional Software
Life-Cycle:

We anticipated that expert systems were being developed
using a much more iterative and less structured lLifecycle
than the conventional waterfall model. Although the
subject of life-cycle models was not intentionally
addressed during the interviews, it often came up when
discussing requxrements It seems that several respond-
ents associated “requirements” with the conventional
waterfall model. They feit very strongly that the conven-
tional approaches to software development, such as the
waterfall model, were much too formal and structured
for expert systems development. Some even suggested it
would be disastrous to apply them to expert systems.
For many, this feeling extended to documenting require-
ments, others simply used a different approach to
requirements. For example, in some cases, require-
ments were not written because it was felt that a require-
ments document was a formally written paper document
that needed to be “approved” before development could
proceed. In other cases, an iterative prototyping devel-
opment effort took place and was followed by docu-
menting system requiremnents. These requirements were
then used to test the system to ensure that it worked as
everyone thought it should.

Prototypes vs. Operational Systems:

Although we asked respondents to state that their system
was either “a prototype™ or “operational,” we received
indications that this distinction was often difficult to
make. For example, responses included “it is both a
prototype and operational,” or “it is an operational
prototype,” or “itis just a prototype but we have many
users.” It seems that some systems are originally
intended to be a prototype but are used operationally.
Some intentionally approach the development of an
operational system by first developing a “prototype™ and
once the prototype is “certified,” it is considered “opera-
tional.” Others acknowledge there is a danger that a
prototype will be used as if it were operational. They
have taken steps to ensure that a prototype system that
is not accidentally relied upon in an operational setting.

Real-Time Performance Analysis:

In our survey, we intended “real-time performance anal-
ysis” to refer to the ability to predict the response time
for an expert system. That is, the ability to analyze the
time performance of the system. However, from the
interviews we learned that many interpreted “real-time
performance analysis”™ to mean the ability to get the
systern to run as fast as desired necessary. While this is
important, it is unclear from the survey and the inter-
views just how many (if any) of the respondents had
quantifiable, rigid needs for expert systems which could
generate a response in a guaranteed time frame. Cer-
tainly few of the system developers had formally ana-
lyzed or documented any “hard” real-time constraints.

Issues independant of A Systnm Bomg an Expert
System

An important, but difficult, aspect of analyzing expert
system development methodology is distinguishing prop-
erties of expert systems that are significantly different
from properties of conventional software [2]. This is
also an important aspect of the analysis of this survey of
V&V issues. Several comments appeared to be due
more to factors other than the fact that the system being
developed was an “expert system.” The interviews
helped elarify this issue, and the i lmpornm ones are dis-
cussed in this section.

Extensive Use of Pratotyping and Rapid Dcvolopment:

The conventional waterfall hfe-cycle model has proven
to be ineffective for conventional soﬁwan development.
Therefore, it is no surprise that developer: do not want
to use it for expert system development. A more itcra-
tive model (e.g., the spnral modei) that includes the use
of rapid prototyping is being perceived as a better alter-
native to the waterfall model. “Conventional™ software
development projecis often include the use of proto-
typing for activities like developing better user interfaces
and having developers belicr understand the problem
domain. These kind of issues are not unique to expert
system development, but did come up- often in the
survey, particularly during the intervicws.

SmalllSimple vs. Large/Complex Systems:
Although some of the systems surveyed arc fairly large

{e.g., 200 person-months), they are gencrally much
smaller than dedicaled sofiware development projects

§ This is described in more detail in {7], p.154 as the Knowledge Engineering Paradox: “The more compelem domain experts
become, the less able they are to describe the knowledge the use 1o solve problems.” :

(e.g., Shuttle mission control center (MCC), Shuttle flight
software, etc.). The systemns surveyed seem to be iso-
lated efforts to develop off-line applications for niches
for which expert system technology was felt to be very
suitable. They were generally systems that were not part
of a larger software system, though they are often used
in conjunction with a large data processing system (e.g.,
they receive real-time data from a large data processing
systern). This allowed the expert system developers to
work without many of the constraints imposed on larger
systems (e.g., tightly controlied configuration manage-
ment).

Addressing a Knowledge Engineer Instead of a
Programmer:

Although we did not intend to gather information on the
experience and background of individual expert system
developers, we did learn that several respondents
involved in developing expert systems are experts in a
problem domain without significant programming expe-
rience. This fact was important when formulating the
detailed recommendations’.

Issue Summary:

It may be the case that the above issues are indeed
typical of expert system development projects and that’
they should be addressed when addressing V&V of
expert system problems. However, it should be recog-
nized that they are somewhat different than the other
_ issues that are true of all expert systems regardless of
their size and who is developing them. This may point
to a need to tailor suggestions for V&V of expert
systemns to considerations such as the size of the expert
system, the experience of the developer, whether the
system is embedded in a much larger software system,
etc..

Recommendations Based on the Survey

The major goal of this survey was to discover and docu-
ment the current state of the practice in V&V of expert
systems. Based on the survey results, it appears that
much can be done to improve the practice. As a
starting point, recommendations for improving KBS
V&YV were drawn from the survey and interview results.
These recommendations are separated into two catego-
ries: direct recommendations which are direclly sup-
ported by the survey results and inferred
recommendations which can be inferred from the survey
results by analyzing relationships among the responses.

7 The detailed recommendations are discussed in [9].

Direct recommendations include:

» Develon requirements for expert system verification
and validation 4 '

* Address most often encountered issues

e Recommend a life-cycle for expert systems develop-
ment :

Inferred recommendations include:

¢ Address readability and modularity issues

* Address configuration management issue

e Develop criteria to classify expert systemns by
intended use

* Investigate applicability of analysis tools

Survey Conclusions

The original goal of our survey was to gather data and
document the current state-of-the-practice in KBS V&V.
The survey and follow-up interviews have given us con-
siderable insight into the kinds of problems that devel-
opers have really encountered in developing and
verifying expert systemns. MNany of these; problems will
require additional work before solutions will be readily
available. The analysis of the survey and interviews and
the subsequent recommendations can serve as valuable

. reference for directing future KBS V&V research into

those areas which are of the most value 1o KBS devel--
opers and users. In addition, managers of KBS devel-
opment projects can learn from these results to structure
life-cycle approaches for KBS development which are
more likely to lead to high quality application software.

Space Station Freedom Program V&V Re;'quirements
Analysis .

Overview

There are several software V&V requircments for the
Space Swuation Freedom Program (SSFP) that are con-
tained in SSFP documents. KBS V&YV issues were not
considered when these requirements were defined so it
was felt that they might not be appropriate for the V&V
of KBSs. To understand the scope of this problem and
how it might be resolved, we defined a task$ to:

= Identify all SSFP V&V recquirements :

* Analyze the applicability of the requircments to
KBSs .

* Make recommendations so that all V&Y require-
ments would apply to KBSs. A recommendation

could be to change an existing V&V requirement or
to develop a KBS V&V technique that could be
used to satisfy a requirement.

Analysis

From several SSFP documents, we initially identified 93
SSFP V&V requirements which were specific to the
technical work of software V&V. That is, we did not
consider hardware requirements, general documentation
requirements, or logistical requirements ‘such as
reporting procedures. Grouping similar requirements
together and eliminating some minor duplication
resulted in 50 distinct requirements.

We analyzed each of the 50 requu’ements to answer the
following questions:

* What is the intent of this requirement ?

« Does this requirernent make sense for a KBS ?

* Is this requirement currently satisfied in the current
state-of-the-practice ?

« If it is not in the current state-of-the-practice, is
there any inherent reasoa it could not be satisfied ?

» If there is no inherent reason it can not be satisfied,
what is it about KBS development that makes this
requirement difficult to satisfy ?

Results

Twenty-seven of the requirements are defined either at a
level of generality or at a point in the life-cycle where
specific software attributes are indistinguishable and can
be applied equally to both KB and conventional soft-
ware systems. Seven of these requirements’ can be
applied to KBSs using existing processes. Thus, 16
requirements remained that were uniquely difficult or
impossible to satisfy for KBSs.

" We learned that many requirements that would be diffi-
cult to satisfy for KBSs were due to two major factors:
“lifecycle model” (four requirements) and ‘“system
requirements™ (five requirements). The “life-cycle
model” factor existed because a general waterfall-type of
life-cycle model was assumed to be used for system
development. For example, the SSFP configuration
managerment requirements would be difficult to apply to
an highly iterative life-cycle by having a high overhead
to documeént and release changes to the system. The
“system requirements” issue existed because many of the
requirements relied on the existence of a detailed set of
requiremnents that identified many considerations; the
general state-of-the-practice definitely does not include

$ A more detailed discussion of this work is discussed in [10].

the gencration of such detailed requi}men_ts. For
example, therc.is an SSFP requirement ¢ verify quality
requirements yet there is no well-undefstood way of
measuring the quality of a KBS.

The remaining V&V requirements that would be a
problem for KBSs are:

* Identification of modules (There is no clear way of
identifying “chunks” of knowledge as a module,
€.g., a rule grouping.)

* Verifying maintainability (It is not clear what makes
an expert syslemn maintainable.)

* Requirements to code mapping (Can not be
mapped to modules unless modules can be identi-
fied; mapping to individual rules /frames is too diffi-
cult.)

~ * Performance analysis (It is difficult 10 .analyze the

response time of non-procedural programs.)

"+ Path coverage (Paths in the conventional sense do
not apply to non-procedural programs, paths in a
broader sense are much more daﬂicuu to identify in
non-procedural programs.)

* IV&V (Because of the heavy reliance on experts to
aid in verification, independent verification [without
the expert or using a different expert] may not be
feagible.)

* Verifying off1he-sheif-components (There are not
standards in KBS languages as there is in the
standard procedural language, Ada.)

Implication to Other Programs :

Most existing programs have V&V standatds and guide-

lines that are similar to the SSFP V&V requirements

and were generated with conventional procedural soft-
ware in mind. An analysis similar to the one summa-
rized here would be necessary to adapt the existing
program standards and guidelines so they could be
applied to KBSs. This approach would be preferable to
generating a separale set of standards and guidelines for
KBSs. As with SSFP, it is likely that the majority of
standards and guidelines could be applied 10 KBSs
without any difficulty so.there would not be much dupli-
cation. Also, in praclice, it may not be clear where in
the system a KBS ends and conventional software
begins. It may even be the case that a sysiem that starts
out being a KBS might end up being implemented as
conventional software or visa versa. So having separate
KBS and conventional software V&YV standards and
guidelines would create many difficulties.

Summary

From the survey that we have performed, we have deter-
mined that there are some issues with respect to the
state-of-the-practice in V&V of KBSs. We have ailso
learned about common practice as well as problems.
From the analysis of SSFP V&V requirements, we have
learned that conventional V&YV standards and guidelines
are not completely applicable to V&V of KBSs. We
have also learned that the state-of-the practice in con-
ventional software V&V (as represented by standards
and guidelines) is significantly different than the state-of-
the-practice in KBS V&V.

References

[1] Bell, M.Z. (1985). Why Expert Systems Fail.
Journal of Operations Research Society. 36 (7).

[2] Culbert, C, Riley, G., Savely, R.T. (1987). An
Expert System Development Methodology Which
Supports Verification and Validation. In Pro-
ceedings of ISA 88. Houston, TX: Instrument
Society of America.

[3] Ericson, K.A., Simon,H.A. (1984). Protocol
Analysis. MIT Press.

[4] O'Keefe, R.M., Lee, S. (1990). An Integrative
Model of Expert System Verification and Vali-
dation. Expert Systems with Applications 1 (3).

[5] Rushby, J. (1988). Quality Measures and
Assurance for Al Software. NASA Contractor
Report No. 4187.

[6] Slagle, J.R., Gardiner, D.A. (1990). Knowledge
Specification of an Expert System. IEEE Expert. 5
).

[7] Waterman,D.A., (1986) A Guide to Expert
Systems. Addison-Wesley.

[8] Constantine,M.M, Ylvila. W.W. (1990). Testing
Knowiedge-Based Systems: The State of the Prac-
tice and suggestions for Improvement. Experr
Systems with Applications 1 (3).

[9] Hamilton,D., Kelley,K., Culbert,C. State-of-
the-Practice in Knowledge-Based System Verifica-
tion and Validation. To appear in Expert Systems

~ with Applications.

[10] Expert System Verification and Validation
Study, RICIS Contract #069, Phase 2 - Require-
meats Identification, Delivery 2 - Current Require-
ments Applicability, University of Houslon / Clear
Lake.

Proposed Requirements Content

Copyright, 1986

Robert C. Angier

IBM Federal Systems.Division

ES V&V Workshop

ES ViiV Workshop

Contents

Software Requirements Specification |

Document Content 2
Section | - Introduction 2
Section 2 - Applicable Documents 3
Section 3 - Environmental Specification 4
Section 4 - Interface Requirements 6
Section 5 - Detailed Functional Requirements
Section 6 - Performance Requirements 12
Section 7 - Adaptation Requirements 13
Section 8 - Qualification Requirements 14
Section 9 - Support Requirements 15
Section 10 - Requirements Traceability 16
Section 11 - Notes 17
Appendixes 17

Application by Product Type 17

8

Contents

ii

ES V1V Workshop

Software Requirements Specification

The following is an annotated outline for a proposed detailed Software ‘Requirements Specification (SRS) for
software support tools.

Goals: The objectives of this document are to:

« provide a standard for detailed software requirements

address the information needs of both users and developers

« allow for orderly expansion from user to developer requirements

» provide requirements content ~checklist” that is complete enough to avoid surprises later
« include requirements related to software reusability

« simplify requirements maintenance by partitioning its content into independent sections (to the degree
possible)

« provide a requirements model that supports a range of product sizes, from a simple, stand-alone tool to
a large system of tools.

Sources: Sources used in developing this document include:

« DOD-STD 2167 Software Development Standards, 04 Jun 85

o Draft FSD Software Requirements Specification (SRS) Practice and Bullletins, SEB Spec. Development
Working Group (SDWG), Nov. 85 and Jan. 86.

« Proposed Standard for SPF Transaction Requirements, Oct 83.

Use of Standards: Much of the information requested in cach section could be defined once, as a standard,
and referenced by individual specifications. This method is preferred, since it results in greater compatibility
between products. It would also reduce the amount of work required to write a detailed specification, with
no loss of content.

Document Variations: Since this document has been designed to support large-scale software systems, it is
acknowledged at the outset that some of its provisions will not be needed for simple tools. Specific variation
by section are summarized in “Application by Product Type” on page 17.

Term)'nology: The terms “item” and “software clement” have been used interchangeably in the remainder of
this document. Both refer to the software product which is specified by the requirements document.

Software Requirements Specification 1

ES V2V Workshop

Document Content

Section 1 - Introduction .
This section provides general orientation material related to the software element and its specification.
1.1 - Document Description

A standard section that summarizes:

* the purpose of this document
* the contents of this document (by major section)

1.2 - item ldentification

Identifies the software element specified by this document, including its ID (if any) and full name.
1.3 - Item Purpose

Brief description of purpose of the software element (i.e.., its intended use).

If the item is part of a larger system, then the following subsections should be used:

1.3.1 - System Membership: The identity of the system or systems that the software element is a part
of.

1.3.2 - System Purpose: Real-world purpose of the system that the software element is a part of.

1.3.3 - Item Role: role of the specified software element within the system (i.e., what it is responsible
for within the system)

1.4 - ltem Scope
Summary of the software element’s scope:

1.4.1 - Major Functions: Summary of major functions (actions) performed by the software element (i.e,
scope of its functional responsibilities).

1.4.2 - Application: Identifies the software element’s expected range of application (scope of its target
domain).

1.5 - Item Classification

Identification of the type of software element specified (¢.g., stand-alone tool, systern component, reusable
software component)

If this item is reusable, the following subsections apply:
1.5.1 - Item Type: Identifies the category of this item within a designated reusable software taxonomy.

1.5.2 - Item Characteristics: Identifies key distinguishing features of this item which aid in its
selection.

Software Requirements Specification 2

ES V3V Workshop

Section 2 - Applicable Documents

This section contains a summary list of other documents that form a part of this specification, consolidated
from other parts of this document. It identifies the exact versions of decuments that apply.

2.1 - Specifications

Related specifications that affect the software product, including:

+ Higher-level specifications (¢.g., of the system that this element is a part of.
« Interface specifications of related software and hardware elements.

2.2 - Standards
Standards that apply to the software product, or the process by which it is produced.

2.3 - Other Publications

Drawings
Manuals
Regulations
Handbooks
Bulletins
etc.

Software Requirements Specification

3

ES V4V Workshop

Section 3 - Environmental Specification

This section is intended to make assumptions or requirements about the software element’s surroundings
explicit and visible. This is to avoid “surprises” later, when the product: is delivered.

There are three parts to this section:

* the operational environment in which the software element is used,
* the target execution environment in which it runs, and
* the implementation environment in which it is produced and supported.

This organization recognizes that software IS a transformation of the target “machine” to an operationally
useful one. Software is also transformed form its implementation form to the target machine form. These
relationships are shown in Figure 1.

TT People
Operational (3.1) (users/oper)
Environment Man/machine
Interface
1/0
Applications Software Other
Hardware Element Software
Target Machine
Resources
Execution (3.2) Target
Environment Execution
Environment
—_— : Compile, Linkedit
TT & Logistic Support
(3.3)
Implementation Implementatn
Environment

Figure 1. Relationships of a Software Element to Its Environment
3.1 - Operational Environment

This section is a general characterization of (1) how the specified software element is intended to be used,
and (2) the people that will use it.

3.1.1 - Operational Objectives: Describe what the system’s end users are trying to achieve, in terms of
useful results. Also describe generally how the software element contributes to the user’s real-world objec-
tives.

3.1.2 - Operational Constraints: Identify real-world constraints that limit how the system can be used.
(For example, sharing of terminals by several users, or limited time to get the work done).

3.1.3 - Item Users: Description of the software element’s users. Where the software element supports more
than one kind of user (e.g., an “author” and “reviewer”), these groups should be identified here, and charac-
terized separately.

3.1.3.x - (Name X) User Group: For each distinct user role, identify:

Software Requirements Specification 4

ES V5V Workshop

3.1.3.x.1 - Tasks

« the user’s job objective or responsibility
« tasks that make use of this software clement

.

3.1.3.x.2 - User Characteristics: Describe this group of users, in terms of assumed (or required) knowledge,
skill levels, and training.

3.2 - Target Execution Environment(s)

This section defines the hardware/software environment (or environments) in which the software element is
to be operated.

3.2.1 - Target Machine Environment: Identifies the target programmable hardware in which this software
element will operate. Hardware devices that it directly interfaces with, including terminals and workstations,
should be identified. Where hardware configurations are restricted, those constraints should also be noted
here.

3.2.2 - Target Software Environment: Identifies the operating system and other common software packages
that make up the target operating environment (e.g., MVS, IMS, and ADF II). Only include those items on
which the specified software element must depend. Include minimum release numbers if applicable.

3.3 - Implementation Environment

This section describes features of the software development environment that are significant to implementa-
tion of this software element. Its subsections describe the implementation hardware, software, languages,
and process.

3.3.1 - Implementation Hardware Environment: The machine environment in which the software element
is to be developed and supported should be described. If it is the same as the target execution machine, then
simply reference that section.

3.3.2- Implementation Software Environment: The software implementation environment includes identifi-
cation of the implementation operating system, compiler(s), assemblers, linkage editors, and other tools that
affect development of the software product. .

3.3.3 - Programming Languages: Specifies the allowable programming language(s) in which the software
element is to be implemented. Identify standard language variants if used (e.g., the project-specific part of
the Ada language).

3.3.4 - Implementation Process Standards: Identify standard methodologies that are to be used in imple-
mentation of the software product, in order to control its content and quality.

3.3.5 - Software Product Standards: Identify standards to be met by deliverable products of the software
implementation process, including design documentation, source code, and test procedures.

Software Requirements Specification 5

ES V6V Workshop

Section 4 - Interface Requirements
4.1 - Summary of Interfaces

This section defines the interface requirements that affect the software element interactions with other system
clements:

4.1.1 - Interface Relationships: A summary of functional and physical interfaces between the software
element and hardware or other software elements. This is usually satisfied by a block diagram with labelled

arrows.

4.1.2 - Interface Identification and Documentation: Proper identification of each interfacing hardware or
software element, and identification of associated documents containing interface requirements. For unique
interfaces, the appropriate section of this document should be cited.

This section can be satisfied by an Interface Identification Table, such as the one shown in Figure 2.

Interface | Interfacing Element Doc. Document
Name Num. Name
term if {Model XYZ Terminal xyz-8014| Program. I/F

graf if |Graphic Display Subsys|This Doc{ Sect. 4.2.5

mous if |WHITE-2300 Mouse This Doc| Sect. 4.3.1

Figure 2. Sample Interface Identification Table
4.3 - Unique Software Interfaces

This subsection describes detailed interface requirements for software interfaces described above, which are
not defined in separate specifications.

If any software interfaces are uniquely defined for this item, they should be documented bere in separate
subsections:

4.3.x - (Name X) Interface This subsection specifies the “X” software interface by name, discusses its
purpose, its partitioning of functional responsibilities, and provides a summary of information commu-
nicated via the interface. The summary may be provided by an Interface Summary Table, as in

Figure 3 on page 7.

Software Requirements Specification 6

ES V7V Workshop

Interface Information Initiation Expected
Name Description Condition Response
term if A | Data Ready Buffer Full Clear
Hy ==> SW | Sync Receive Sync none
term if B | Mode Select Mode Change Status
Sy ==> HW | Sync Startup Sync
Status Request Cyclic 1.8 Hz Status

Figure 3. Sample Interface Summary Table

Interface specifications should include:

« Identification of which element

transmits data, and which receives it.

« The conditions for.initiating each data transfer. If cyclic, specify the rate.

« The transfer protocol used for the

interface (¢.g., blocking, message switching, handshaking).

« The priority level of the interface and each signal, if applicable.

tation conventions, where applicable.

« The expected response to each data transfer,
element to acquire the data, and respond, if applicable.

if any.

o Identify whether the interfacing element executes cO

element being specified. If concurrent, the method of inter-task synchronization should also be

specified.

4.4 - Unique Hardware Interfaces

This subsection describes

not defined in separate specifications.

If any hardware interfaces are uniquely defined for this item,

subsections:

4.4.y-(Na

detailed interface requirements for hardware interfaces described

me Y) Interface This subsection specifies the

for “4.3 - Unique Software Interfaces” on page 6.

including the

ncurrently or sequentially with the software

they should be documented here in separate

“Y” hardware interf:

Software Requirements Specification

above which are

. Format and content of the data being transferred. Include units of measure, scaling, and represen-

maximum time allowed for the receiving
Also include the effects of not responding,

, in the same manner as

7

ES V8V Workshop

Section 5 - Detailed Functional Requirements

This section specifies what the software element must do (not how it must do it). The software element’s
externally visible behavior should be described as though it was a “black box”. This approach provides the
developer with enough flexibility to choose the best design, while giving the requirements engineers the
ability to define what “best” means for this item.

5.1 - Functions

The functions (actions) performed by the software element are defined here. A simple tool can be com-
pletely described in one section. For complex systems, the behavior is often described by a model, consisting
of simple functions that are linked together by data flow.

The subsections which follow describe a functional model for a large system.

5.1.1 - Functional Overview: A summary diagram, such as a Functional Black Diagram, or Level 1 Data
Flow Diagram, should be used when more than one function is described. This provides a frame of refer-
ence, or “big picture”, in which the individual functions can be understoad. (This section may be omitted
for a simple tool).

If there are any requirements that apply in common for all functions, then subsections can be used, as in
“5.1.x - (Name X) Function.”

5.1.x - (Name X) Function: The X Function is identified and briefly described. For interactive tools, each
transaction should be described as a separate function. The subsections below provide a detailed functional

specification:
S5.1.x.1 - Activation: Describes how you get here. Specific considerations to be addressed are:

Activation Conditions: Describes when to perform this function, how it is invoked (either manually
and/or by other software), and what must be done prior to to its activation.

Termination Conditions: Describes when this function may be exited, how, and what must be done
prior to its termination.

Restart Conditions: Describes the conditions under which operation of this function is re-started (if
any).

Checkpoint/Recovery: Defines requirements for checkpointing current state, and recovering that state
(if any).

S5.1.x.2 - Displays: This subsection describes the human interface to the function, as perceived by the user.
It can include the following, in order of increasingly detailed specification:

Information Content: Identifies the information items to be displayed. Static items should be differen-
tiated from those which may change.
Presentation Form: The form in which the information is to be displayed is defined:

data format describes how each data item is to be represented

organization describes the arrangement of the display as a whole, either in general terms, or wn
detail (e.g., 2 direct image of the intended display). Rules by which this organ-
ization can be adapted to different devices (e.g., with different display sizes)
should also be given.

Software Requirements Specificaion 8

ES V9V Workshop

color use rules for the use of colors, or direct assignment of colors to display elements.
highlighting use of special features such as overbright, reverse, and blinking.
symbol use rules for the use of special symbols on displays

Initialization: defines how the display should be pre-set when activated.
Other Human Inputs: Use of bells, alarms, or other devices that are intended for the user.

5.1.x.3 - Controls: This subsection describes the human interface by which this function is controlled.
Typical means of control are by menu selection, data field entry, PF Keys, and command entry. It is desir-
able to separate the mechanism used from the action produced, since these assignments are frequently device-
dependent, or are subject to customization. A Functional Control Summary Table, as in Figure 4, may be
used to provide an overview of the controls available. Additional Activation columns may be needed for
specific devices (¢.g., an IBM 327x terminal has different PF Keys than a 3270-PC).

Type of |Control Control Means of
Control | Name Description Activation
back Return to previous level PF Key-3
Exit
from Return to "home* display PF Key-2
Display { home (main meny) |=oomesees
CMD=home
Invoke Call *help* facility to
Another | help explain this display PF Key-1
Display
add Add or Update a record jtemcmd=A
Function
del Delete a record itemcmd=0
Control :
crank | Calculate current results CMD=run
recrd | Specify a record for display|CMD=Rec_ID
Display
Content | frwd scroll forward to next recd PF Key-8
Control
hex tranlate to hexidecimal enter

Figure 4. Sample Functional Control Summary Table

Specification of each control may include the following:
Control Activation: describes the means of activating this control (if a table is not used).
Control Inputs: 1dentify the information items that define the control’s action, and their effects.

Contraints: Defines any restrictions on the use of this control, and the system response when these
are not satisfied.

Actions: Identifies the action(s) performed when this control is used. (These are further defined 1n
“5.1.x.5 - Actions” on page 10).

Software Requirements Specification 9

L e

ES V10V Workshop

S.1.x.4 - Inputs: This subsection describes the data input requirements of the function. For interactive
systems, this corresponds to manual data entry of dynamic fields. For other applications, files or records
may be specified.

Typical input specifications include the following:
Input Source: ldentifies the source or sources of required data.

Input Organization: Define the arrangement of input data (e.g., record layout, sort order) if it isnot
pre-defined elsewhere (e.g., by interface specifications or display definition).

Input Constraints: Defines any restrictions on the value of an input, and the system response when
these are not satisfied.

Conversions: Defines the transformations to be made to the input to put it in in a form which is
uasble by this function.

5.1.x.5 - Actions: This subsection defines what the function does. Actions that may be performed include
data transformation, generation or detection of events, commanding devices, or performing mode transitions.

The principal objective of this part of the specification is to be as clear and concise as possible in describing
the required action. A variety of means of expression are possible, including:

mathematical formulation -
structured English description

decision tables or trees

data flow diagrams

etc.

Choose methods which are appropriate to the function being defined (For example, decision tables are useful
for expressing complex logical conditions).

5.1.x.6 - Outputs: This subsection defines the outputs that are produced by this function, including their
destination functions, or external software or hardware elements.

5.2 - Modes or States

This subsection defines the major changes in function that result in characteristically different software
element behavior. For example, if a tool provides both a “browse” and an “edit” capability on the same file,
the way it operates is different in each case. Controls may be different, or have different effects; displays may
vary; allowable operations in one case may be illegal or non-sensical in the other. The concept of a mode is
generally more extensive in large systems, where modes or states are often directly related to the operational
task.

5.2.1 - Operating Modes: The possible operating modes of the software element are defined individually. If
there are several types of modes involved, it may be useful to arrange them into related groups. For each
mode, its name, description, and main characteristics should be stated.

5.2.2 - Events: System events that can affect its operating mode (e.g., the failure of a hardware device) are
described here. A name and definition should be given for each event.

5.2.3 - Mode Transitions: The ways in which system operation changes from one mode to another are
defined:

Initial Modes
Identifies the system modes that are present at initiation of this software element.

Cafiarare Ramtiirsmmante Coar et e 10

ES V11V Workshop

Legal Mode Transistions
Defines the set of allowable changes in modes. This infomation can be provided in a
mode-to-mode transition matrix, or by a state transition diagram. If several types of
modes exist, they should be grouped into connected sets.

Mode Transistion Rules
Defines the conditions or events that determine when each leagal mode transition can

occur.

5.2.4 - Relationship to Functions: Defines the effect of system modes on the software element’s functions.
This can generally be shown by a table that indicates which functions are valid in each operating mode.

5.2.5 - Relationship to Objects: Defines the effect of system modes on the information objects on which
the functions operate. A table showing which objects are valid in each state can be used.

5.3 - Information Requirements

This subsection defines the major information objects that are used or produced by the software element.
5.3.1 - External Objects: The data which describe real-world objects to the system are defined.

An information processing system relies on information models of real world objects. For example, a person
may be represented by a name, SS#, and department. Similarly, a hardware device may be represented to
the system by its device type, model#, path, and 1/O rate. Definitions should be grouped by the object to
which they refer.

5.3.1 - Internal Objects: Where necessary, the representation of internal information objects is defined (e.g.,
1/O blocks, records, files, or data bases). This may be nceded where pre-existing interfaces must be satisfied,

as in hardware device interfaces, or interfaces to existing software systems. Where ever possible, reference
source requircments for these definitions, rather that repeat them.

Software Requirements Specification 1 1

ES V12V Workshop

Section 6 - Performance Requirements

This section defines how well the software element must satisfy its functional requirements. Performance
considerations are often the most significant determining factor in softvsare design, and in user acceptance of
the software product. It is therfore essential that these factors be explicitly defined at the outset of develop-

ment.

It is particularly important that performance requirements be testable; in each c#se, the means of determining
that the requirement has been satisfied should be stated.

6.1 - Availability Requirements

Describe the required probability that the software element is in readiness to perform its function. This
figure should define real availability to the end user, which takes into account terminals, lines, controllers,
intermediate processors, host machines, and necessary software elements (e.g., a specific OS and DBMS).
Availabilty figures should be derived form operational user need; it may be desirable to relate them to system
capabilities.

6.2 - Timing Requirements
Timing constraints on the software element’s operation are defined. Timing factors that may be specified
include:

response time
maximum allowable time from occurrence of a system stimulus to the system’s response.
Response time is usually expressed in terms of its probability distribution, rather than a single
value (e.g., 95% of responses occur in less than 1 second). For batch processes, response times
refer to the allowable time from initiation to completion of a task.

frequency
cyclic rate of occurrence, usually expressed in cycles/second (Hz).

jitter
allowable variation in cyclic rate (eg. + /- 200 msec).

currency
age of the information used or produced (a.k.a. data staleness)

time homogeneity
requirement that specific data samples be coincident in time.

The conditions under which these are to be measured should also be identified.
6.3 - Accuracy Requirements

Specify the required accuracy and precision of the software element’s outputs. This usually applies to
numerical software products, but may be needed in other areas as well.

6.4 - Capacity Requirements

6.4.1 - System Capacities: Defines the capacity of capabilities provided by the software element. It specifies
required sizes of objects that are supported by the software element (e.g., table sizes, number of devices,
concurrent users, etc.).

6.4.2 - System Resources: Defines the capacity of system resources utilized by the software element. It
specifies required CPU power, disk storage, 1/O Bandwidth, or other resources that are necessary for the
software element to meet its performance requirements.

Software Requirements Specification 12

ES V13V Workshop

Section 7 - Adaptation Requirements

This section defines how the software product can be adapted to the variety of its actual use. It includes
possible configurations, customization, tuning, and future growth of the software element.

7.1 - Configuration Requirements
This section defines the variety of configurations that the software product must take:

7.1.1 - Target System Configurations

7.1.2 - Required Subsets

7.2 - Customization Requirements
7.2.1 - Application Tailoring

7.2.2 - Installation Tailoring

7.2.3 - User Tailoring

7.3 - System Tuning

7.3.1 - Instrumentation Requirements
7.3.2 - System Parameters

7.4 - Provisions for Future Growth

Software Requirements Specification 13

ES V14V Workshop

Section 8 - Qualification Requirements
This section specifies the qualification methods to be used to ensure thax each of the requirements has been
satisfied. Major methods of qualification include:

Inspection visual examination of the product

Demonstration relies on observable functional operation

Test relies on instrumented operation and analysis of the results

Analysis engineering assessment, involving interpretation or extrapolation of accumulated data

Other qualification methods may also be defined for unique purposes.

Software Requirements Specification 14

ES V15V Workshop

Section 9 - Support Requirements

9.1 - Product Delivery and Installation . .

9.1.1 - Preparation for Delivery: This section specifies the form and medium of delivery, labeling, pack-
aging, and handling. '

9.1.2 - Product Distribution

9.1.3 - Installation Requirements

9.2 - Logistic Support Requirements
9.2.1 - Product Update

9.2.2 - Data Maintenance

9.3 - Training Requirements

Software Requirements Specification 15

~

ES V16V Workshop

Section 10 - Requirements Traceability

This section demonstrates that all allocated higher-level system requu'emems that have been allocated to this
software element are satisfied.

Software Requirements Specification

16

ES V17V Workshop

Section 11 - Notes

General information that aids in understanding of this specification (e.g., background information, glossary,
formula derivations). This section does not contain requirements.

Appendixes

Supplemental information which is referenced in the body of the document, but is,separate for ease of docu-
ment maintenance.

Application by Product Type

Software Requirements Specification 17

